Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)big $Theta$ question dealing with $log_2n$ and $log_10n$How does $log_2(A)-log_2(B)+log_2(c)$ not equal $log_2(fracBcA)$Show that $S(n)leq5log_2(2n)+7$Solve for $b$ in $(frac1a + b(fracn1/a)^frac1b) * log_2(frac1delta) = frac1alog_2(frac1delta) * log_2(n)$Let $x=frac13$ or $x=-15$ satisfies the equation,$log_8(kx^2+wx+f)=2.$Solve the following equation : $log_2(x)*log_4(x)*log_8(x)=4.5$How to prove that $log_2 log_2 fracn2 + frac1log_2 n < log_2 log_2 n$?How to solve $ log_8[log_4(2x+1)] = log_27 3$ for $x$?Prove that $log_8(9)+log_9(10)+log(11)<2log_2(3)$$displaystyle 1+ fraclog_2(2/3(n+1))log_2(3/2) = fraclog_2(n+1)log_2(3/2)$
Is there a service that would inform me whenever a new direct route is scheduled from a given airport?
Area of a 2D convex hull
Direct Experience of Meditation
Unexpected result with right shift after bitwise negation
Why use gamma over alpha radiation?
The following signatures were invalid: EXPKEYSIG 1397BC53640DB551
What is the order of Mitzvot in Rambam's Sefer Hamitzvot?
Windows 10: How to Lock (not sleep) laptop on lid close?
Do working physicists consider Newtonian mechanics to be "falsified"?
Slither Like a Snake
How to market an anarchic city as a tourism spot to people living in civilized areas?
When is phishing education going too far?
Training a classifier when some of the features are unknown
Classification of bundles, Postnikov towers, obstruction theory, local coefficients
Stars Make Stars
Is 1 ppb equal to 1 μg/kg?
grandmas drink with lemon juice
Can I throw a longsword at someone?
How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time
When communicating altitude with a '9' in it, should it be pronounced "nine hundred" or "niner hundred"?
Jazz greats knew nothing of modes. Why are they used to improvise on standards?
Strange behaviour of Check
Sorting inherited template fields
New Order #5: where Fibonacci and Beatty meet at Wythoff
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)big $Theta$ question dealing with $log_2n$ and $log_10n$How does $log_2(A)-log_2(B)+log_2(c)$ not equal $log_2(fracBcA)$Show that $S(n)leq5log_2(2n)+7$Solve for $b$ in $(frac1a + b(fracn1/a)^frac1b) * log_2(frac1delta) = frac1alog_2(frac1delta) * log_2(n)$Let $x=frac13$ or $x=-15$ satisfies the equation,$log_8(kx^2+wx+f)=2.$Solve the following equation : $log_2(x)*log_4(x)*log_8(x)=4.5$How to prove that $log_2 log_2 fracn2 + frac1log_2 n < log_2 log_2 n$?How to solve $ log_8[log_4(2x+1)] = log_27 3$ for $x$?Prove that $log_8(9)+log_9(10)+log(11)<2log_2(3)$$displaystyle 1+ fraclog_2(2/3(n+1))log_2(3/2) = fraclog_2(n+1)log_2(3/2)$
$begingroup$
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $. Any hints is appreciated. Thanks.
algebra-precalculus logarithms
$endgroup$
add a comment |
$begingroup$
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $. Any hints is appreciated. Thanks.
algebra-precalculus logarithms
$endgroup$
$begingroup$
Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
$endgroup$
– J. W. Tanner
Mar 31 at 20:01
$begingroup$
I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
$endgroup$
– Antonio
Mar 31 at 20:13
$begingroup$
convert from base 8 to base 2 logarithm
$endgroup$
– J. W. Tanner
Mar 31 at 20:14
add a comment |
$begingroup$
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $. Any hints is appreciated. Thanks.
algebra-precalculus logarithms
$endgroup$
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $. Any hints is appreciated. Thanks.
algebra-precalculus logarithms
algebra-precalculus logarithms
edited Mar 31 at 21:58
J. W. Tanner
4,7871420
4,7871420
asked Mar 31 at 19:57
AntonioAntonio
296
296
$begingroup$
Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
$endgroup$
– J. W. Tanner
Mar 31 at 20:01
$begingroup$
I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
$endgroup$
– Antonio
Mar 31 at 20:13
$begingroup$
convert from base 8 to base 2 logarithm
$endgroup$
– J. W. Tanner
Mar 31 at 20:14
add a comment |
$begingroup$
Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
$endgroup$
– J. W. Tanner
Mar 31 at 20:01
$begingroup$
I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
$endgroup$
– Antonio
Mar 31 at 20:13
$begingroup$
convert from base 8 to base 2 logarithm
$endgroup$
– J. W. Tanner
Mar 31 at 20:14
$begingroup$
Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
$endgroup$
– J. W. Tanner
Mar 31 at 20:01
$begingroup$
Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
$endgroup$
– J. W. Tanner
Mar 31 at 20:01
$begingroup$
I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
$endgroup$
– Antonio
Mar 31 at 20:13
$begingroup$
I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
$endgroup$
– Antonio
Mar 31 at 20:13
$begingroup$
convert from base 8 to base 2 logarithm
$endgroup$
– J. W. Tanner
Mar 31 at 20:14
$begingroup$
convert from base 8 to base 2 logarithm
$endgroup$
– J. W. Tanner
Mar 31 at 20:14
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$
So $y(x+2) = 8^z-frac 13 = frac 8^z2$
And $ frac x-2y = 2^2z+1= 2*2^2z$.
Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...
Just multiply the two together to get
$y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$
$(x + 2)(x -2) = 8^z*2^2z$
$x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.
$x^2 = 32^z + 4$
$endgroup$
add a comment |
$begingroup$
Hints:
$log a+log b=log(ab)$
$log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$
$2^5=32$
Let me know if you need more help. Here's an answer:
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.
$endgroup$
$begingroup$
Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
$endgroup$
– Antonio
Mar 31 at 20:18
1
$begingroup$
You're welcome. Good
$endgroup$
– J. W. Tanner
Mar 31 at 21:04
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169833%2fgiven-that-log-8x2-log-8y-z-frac13-and-log-2x-2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$
So $y(x+2) = 8^z-frac 13 = frac 8^z2$
And $ frac x-2y = 2^2z+1= 2*2^2z$.
Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...
Just multiply the two together to get
$y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$
$(x + 2)(x -2) = 8^z*2^2z$
$x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.
$x^2 = 32^z + 4$
$endgroup$
add a comment |
$begingroup$
Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$
So $y(x+2) = 8^z-frac 13 = frac 8^z2$
And $ frac x-2y = 2^2z+1= 2*2^2z$.
Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...
Just multiply the two together to get
$y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$
$(x + 2)(x -2) = 8^z*2^2z$
$x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.
$x^2 = 32^z + 4$
$endgroup$
add a comment |
$begingroup$
Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$
So $y(x+2) = 8^z-frac 13 = frac 8^z2$
And $ frac x-2y = 2^2z+1= 2*2^2z$.
Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...
Just multiply the two together to get
$y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$
$(x + 2)(x -2) = 8^z*2^2z$
$x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.
$x^2 = 32^z + 4$
$endgroup$
Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$
So $y(x+2) = 8^z-frac 13 = frac 8^z2$
And $ frac x-2y = 2^2z+1= 2*2^2z$.
Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...
Just multiply the two together to get
$y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$
$(x + 2)(x -2) = 8^z*2^2z$
$x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.
$x^2 = 32^z + 4$
edited Apr 1 at 9:44
J. W. Tanner
4,7871420
4,7871420
answered Mar 31 at 22:32
fleabloodfleablood
1
1
add a comment |
add a comment |
$begingroup$
Hints:
$log a+log b=log(ab)$
$log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$
$2^5=32$
Let me know if you need more help. Here's an answer:
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.
$endgroup$
$begingroup$
Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
$endgroup$
– Antonio
Mar 31 at 20:18
1
$begingroup$
You're welcome. Good
$endgroup$
– J. W. Tanner
Mar 31 at 21:04
add a comment |
$begingroup$
Hints:
$log a+log b=log(ab)$
$log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$
$2^5=32$
Let me know if you need more help. Here's an answer:
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.
$endgroup$
$begingroup$
Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
$endgroup$
– Antonio
Mar 31 at 20:18
1
$begingroup$
You're welcome. Good
$endgroup$
– J. W. Tanner
Mar 31 at 21:04
add a comment |
$begingroup$
Hints:
$log a+log b=log(ab)$
$log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$
$2^5=32$
Let me know if you need more help. Here's an answer:
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.
$endgroup$
Hints:
$log a+log b=log(ab)$
$log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$
$2^5=32$
Let me know if you need more help. Here's an answer:
Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.
answered Mar 31 at 20:17
J. W. TannerJ. W. Tanner
4,7871420
4,7871420
$begingroup$
Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
$endgroup$
– Antonio
Mar 31 at 20:18
1
$begingroup$
You're welcome. Good
$endgroup$
– J. W. Tanner
Mar 31 at 21:04
add a comment |
$begingroup$
Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
$endgroup$
– Antonio
Mar 31 at 20:18
1
$begingroup$
You're welcome. Good
$endgroup$
– J. W. Tanner
Mar 31 at 21:04
$begingroup$
Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
$endgroup$
– Antonio
Mar 31 at 20:18
$begingroup$
Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
$endgroup$
– Antonio
Mar 31 at 20:18
1
1
$begingroup$
You're welcome. Good
$endgroup$
– J. W. Tanner
Mar 31 at 21:04
$begingroup$
You're welcome. Good
$endgroup$
– J. W. Tanner
Mar 31 at 21:04
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169833%2fgiven-that-log-8x2-log-8y-z-frac13-and-log-2x-2%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
$endgroup$
– J. W. Tanner
Mar 31 at 20:01
$begingroup$
I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
$endgroup$
– Antonio
Mar 31 at 20:13
$begingroup$
convert from base 8 to base 2 logarithm
$endgroup$
– J. W. Tanner
Mar 31 at 20:14