Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)big $Theta$ question dealing with $log_2n$ and $log_10n$How does $log_2(A)-log_2(B)+log_2(c)$ not equal $log_2(fracBcA)$Show that $S(n)leq5log_2(2n)+7$Solve for $b$ in $(frac1a + b(fracn1/a)^frac1b) * log_2(frac1delta) = frac1alog_2(frac1delta) * log_2(n)$Let $x=frac13$ or $x=-15$ satisfies the equation,$log_8(kx^2+wx+f)=2.$Solve the following equation : $log_2(x)*log_4(x)*log_8(x)=4.5$How to prove that $log_2 log_2 fracn2 + frac1log_2 n < log_2 log_2 n$?How to solve $ log_8[log_4(2x+1)] = log_27 3$ for $x$?Prove that $log_8(9)+log_9(10)+log(11)<2log_2(3)$$displaystyle 1+ fraclog_2(2/3(n+1))log_2(3/2) = fraclog_2(n+1)log_2(3/2)$

Is there a service that would inform me whenever a new direct route is scheduled from a given airport?

Area of a 2D convex hull

Direct Experience of Meditation

Unexpected result with right shift after bitwise negation

Why use gamma over alpha radiation?

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

What is the order of Mitzvot in Rambam's Sefer Hamitzvot?

Windows 10: How to Lock (not sleep) laptop on lid close?

Do working physicists consider Newtonian mechanics to be "falsified"?

Slither Like a Snake

How to market an anarchic city as a tourism spot to people living in civilized areas?

When is phishing education going too far?

Training a classifier when some of the features are unknown

Classification of bundles, Postnikov towers, obstruction theory, local coefficients

Stars Make Stars

Is 1 ppb equal to 1 μg/kg?

grandmas drink with lemon juice

Can I throw a longsword at someone?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

When communicating altitude with a '9' in it, should it be pronounced "nine hundred" or "niner hundred"?

Jazz greats knew nothing of modes. Why are they used to improvise on standards?

Strange behaviour of Check

Sorting inherited template fields

New Order #5: where Fibonacci and Beatty meet at Wythoff



Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)big $Theta$ question dealing with $log_2n$ and $log_10n$How does $log_2(A)-log_2(B)+log_2(c)$ not equal $log_2(fracBcA)$Show that $S(n)leq5log_2(2n)+7$Solve for $b$ in $(frac1a + b(fracn1/a)^frac1b) * log_2(frac1delta) = frac1alog_2(frac1delta) * log_2(n)$Let $x=frac13$ or $x=-15$ satisfies the equation,$log_8(kx^2+wx+f)=2.$Solve the following equation : $log_2(x)*log_4(x)*log_8(x)=4.5$How to prove that $log_2 log_2 fracn2 + frac1log_2 n < log_2 log_2 n$?How to solve $ log_8[log_4(2x+1)] = log_27 3$ for $x$?Prove that $log_8(9)+log_9(10)+log(11)<2log_2(3)$$displaystyle 1+ fraclog_2(2/3(n+1))log_2(3/2) = fraclog_2(n+1)log_2(3/2)$










0












$begingroup$


Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $. Any hints is appreciated. Thanks.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
    $endgroup$
    – J. W. Tanner
    Mar 31 at 20:01










  • $begingroup$
    I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
    $endgroup$
    – Antonio
    Mar 31 at 20:13











  • $begingroup$
    convert from base 8 to base 2 logarithm
    $endgroup$
    – J. W. Tanner
    Mar 31 at 20:14















0












$begingroup$


Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $. Any hints is appreciated. Thanks.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
    $endgroup$
    – J. W. Tanner
    Mar 31 at 20:01










  • $begingroup$
    I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
    $endgroup$
    – Antonio
    Mar 31 at 20:13











  • $begingroup$
    convert from base 8 to base 2 logarithm
    $endgroup$
    – J. W. Tanner
    Mar 31 at 20:14













0












0








0





$begingroup$


Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $. Any hints is appreciated. Thanks.










share|cite|improve this question











$endgroup$




Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, Show that $x^2 = 32 ^z + 4 $. Any hints is appreciated. Thanks.







algebra-precalculus logarithms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 31 at 21:58









J. W. Tanner

4,7871420




4,7871420










asked Mar 31 at 19:57









AntonioAntonio

296




296











  • $begingroup$
    Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
    $endgroup$
    – J. W. Tanner
    Mar 31 at 20:01










  • $begingroup$
    I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
    $endgroup$
    – Antonio
    Mar 31 at 20:13











  • $begingroup$
    convert from base 8 to base 2 logarithm
    $endgroup$
    – J. W. Tanner
    Mar 31 at 20:14
















  • $begingroup$
    Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
    $endgroup$
    – J. W. Tanner
    Mar 31 at 20:01










  • $begingroup$
    I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
    $endgroup$
    – Antonio
    Mar 31 at 20:13











  • $begingroup$
    convert from base 8 to base 2 logarithm
    $endgroup$
    – J. W. Tanner
    Mar 31 at 20:14















$begingroup$
Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
$endgroup$
– J. W. Tanner
Mar 31 at 20:01




$begingroup$
Hints: use $log(a)+log(b)=log(ab)$ and $8=2^3$
$endgroup$
– J. W. Tanner
Mar 31 at 20:01












$begingroup$
I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
$endgroup$
– Antonio
Mar 31 at 20:13





$begingroup$
I can see the pattern of $log_8((x+2)*y)$ and $log_2(fracx-2y)$ but beyond that I am too dumb to solve it. Please help. @J.W.Tanner
$endgroup$
– Antonio
Mar 31 at 20:13













$begingroup$
convert from base 8 to base 2 logarithm
$endgroup$
– J. W. Tanner
Mar 31 at 20:14




$begingroup$
convert from base 8 to base 2 logarithm
$endgroup$
– J. W. Tanner
Mar 31 at 20:14










2 Answers
2






active

oldest

votes


















2












$begingroup$

Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$



So $y(x+2) = 8^z-frac 13 = frac 8^z2$



And $ frac x-2y = 2^2z+1= 2*2^2z$.



Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...



Just multiply the two together to get



$y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$



$(x + 2)(x -2) = 8^z*2^2z$



$x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.



$x^2 = 32^z + 4$






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    Hints:



    $log a+log b=log(ab)$



    $log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$



    $2^5=32$



    Let me know if you need more help. Here's an answer:




    Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.







    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
      $endgroup$
      – Antonio
      Mar 31 at 20:18






    • 1




      $begingroup$
      You're welcome. Good
      $endgroup$
      – J. W. Tanner
      Mar 31 at 21:04











    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169833%2fgiven-that-log-8x2-log-8y-z-frac13-and-log-2x-2%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$



    So $y(x+2) = 8^z-frac 13 = frac 8^z2$



    And $ frac x-2y = 2^2z+1= 2*2^2z$.



    Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...



    Just multiply the two together to get



    $y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$



    $(x + 2)(x -2) = 8^z*2^2z$



    $x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.



    $x^2 = 32^z + 4$






    share|cite|improve this answer











    $endgroup$

















      2












      $begingroup$

      Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$



      So $y(x+2) = 8^z-frac 13 = frac 8^z2$



      And $ frac x-2y = 2^2z+1= 2*2^2z$.



      Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...



      Just multiply the two together to get



      $y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$



      $(x + 2)(x -2) = 8^z*2^2z$



      $x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.



      $x^2 = 32^z + 4$






      share|cite|improve this answer











      $endgroup$















        2












        2








        2





        $begingroup$

        Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$



        So $y(x+2) = 8^z-frac 13 = frac 8^z2$



        And $ frac x-2y = 2^2z+1= 2*2^2z$.



        Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...



        Just multiply the two together to get



        $y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$



        $(x + 2)(x -2) = 8^z*2^2z$



        $x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.



        $x^2 = 32^z + 4$






        share|cite|improve this answer











        $endgroup$



        Well, $log_8(x+2) + log_8 y = log_8y(x+2)= z-frac 13$. And $log 2x-2 + log_2 y = log_2 frac x-2y=2z + 1$



        So $y(x+2) = 8^z-frac 13 = frac 8^z2$



        And $ frac x-2y = 2^2z+1= 2*2^2z$.



        Hmmph.... Normally I'd solve for $y$ in terms of $x$ for one and substitute that value in the other and solve for $x$ but...



        Just multiply the two together to get



        $y(x+2)(frac x-2y) =frac 8^z2*(2*2^2z)$



        $(x + 2)(x -2) = 8^z*2^2z$



        $x^2 -4 = 2^3z2^2z = 2^5z = 32^z$.



        $x^2 = 32^z + 4$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 1 at 9:44









        J. W. Tanner

        4,7871420




        4,7871420










        answered Mar 31 at 22:32









        fleabloodfleablood

        1




        1





















            2












            $begingroup$

            Hints:



            $log a+log b=log(ab)$



            $log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$



            $2^5=32$



            Let me know if you need more help. Here's an answer:




            Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.







            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
              $endgroup$
              – Antonio
              Mar 31 at 20:18






            • 1




              $begingroup$
              You're welcome. Good
              $endgroup$
              – J. W. Tanner
              Mar 31 at 21:04















            2












            $begingroup$

            Hints:



            $log a+log b=log(ab)$



            $log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$



            $2^5=32$



            Let me know if you need more help. Here's an answer:




            Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.







            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
              $endgroup$
              – Antonio
              Mar 31 at 20:18






            • 1




              $begingroup$
              You're welcome. Good
              $endgroup$
              – J. W. Tanner
              Mar 31 at 21:04













            2












            2








            2





            $begingroup$

            Hints:



            $log a+log b=log(ab)$



            $log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$



            $2^5=32$



            Let me know if you need more help. Here's an answer:




            Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.







            share|cite|improve this answer









            $endgroup$



            Hints:



            $log a+log b=log(ab)$



            $log_8c=log_2c/log_2 8,$ so $3log_8 c=log_2 c$



            $2^5=32$



            Let me know if you need more help. Here's an answer:




            Given that $log_8(x+2)$ $+$ $log_8y$ $=$ $z-frac13$ and $log_2(x-2)$ $-$ $log_2y$ = $2z+1$, we have $log_8((x+2)y)=z-frac13$ and $log_2(fracx-2y)=2z+1$, i.e., $log_2((x+2)y)=3z-1.$ Thus, $fracx-2y=2^2z+1$ and $(x+2)y=2^3z-1.$ Multiplying these equations, $x^2-4=2^5z$, so $x^2=2^5z+4=32^z+4$.








            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Mar 31 at 20:17









            J. W. TannerJ. W. Tanner

            4,7871420




            4,7871420











            • $begingroup$
              Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
              $endgroup$
              – Antonio
              Mar 31 at 20:18






            • 1




              $begingroup$
              You're welcome. Good
              $endgroup$
              – J. W. Tanner
              Mar 31 at 21:04
















            • $begingroup$
              Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
              $endgroup$
              – Antonio
              Mar 31 at 20:18






            • 1




              $begingroup$
              You're welcome. Good
              $endgroup$
              – J. W. Tanner
              Mar 31 at 21:04















            $begingroup$
            Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
            $endgroup$
            – Antonio
            Mar 31 at 20:18




            $begingroup$
            Thank you very much, the book that I am doing still hasn't shown me the change of base formula. I get it now.
            $endgroup$
            – Antonio
            Mar 31 at 20:18




            1




            1




            $begingroup$
            You're welcome. Good
            $endgroup$
            – J. W. Tanner
            Mar 31 at 21:04




            $begingroup$
            You're welcome. Good
            $endgroup$
            – J. W. Tanner
            Mar 31 at 21:04

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169833%2fgiven-that-log-8x2-log-8y-z-frac13-and-log-2x-2%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

            Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε