Inequality involving $limsup$ and $liminf$: $ liminf(a_n+1/a_n) le liminf((a_n)^(1/n)) le limsup((a_n)^(1/n)) le limsup(a_n+1/a_n)$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Root test is stronger than ratio test?Given that $a_n > 0$, prove: $liminf left(fraca_n+1a_nright)leq liminf; sqrt[n]a_nleqlimsupleft(fraca_n+1a_nright)$Do the sequences from the ratio and root tests converge to the same limit?Ratio test and the Root testShow root test is stronger than ratio testFinding limit using inequalities: $liminf fraca_n+1a_n le liminf (a_n)^ 1/nlelimsup (a_n)^ 1/nle limsup fraca_n+1a_n$Proof of limit inequalityShow that $limsup|s_n|^1over nle limsup|s_n+1over s_n|$Inequality between limits inferiorThe inequality $limsup fracc_n+1c_n geqslant limsup sqrt[n]c_n$How to work out the limit of this bounded sequence?Rudin Series ratio and root test.Inequalities involving liminf and limsupFind $limsup$ and $liminf$ of a sequence and prove $liminf a_n leq limsup a_n$.Trying to prove $liminf (A_n) subseteq limsup (A_n)$For $s_n$ a sequence in $Bbb R$, if $lim s_n$ defined as a real number, then $liminf s_n = lim s_n = limsup s_n$.Convergene of a sequence if and only if limsup and liminf agree$liminf A_n$ and $limsup B_n$$liminf a_nleq lim a_n_k leq limsup a_n$Proofs involving limsup and liminf
What LEGO pieces have "real-world" functionality?
How discoverable are IPv6 addresses and AAAA names by potential attackers?
Why light coming from distant stars is not discreet?
Why is my conclusion inconsistent with the van't Hoff equation?
What to do with chalk when deepwater soloing?
When do you get frequent flier miles - when you buy, or when you fly?
Generate an RGB colour grid
How to answer "Have you ever been terminated?"
How to call a function with default parameter through a pointer to function that is the return of another function?
Error "illegal generic type for instanceof" when using local classes
Echoing a tail command produces unexpected output?
How does debian/ubuntu knows a package has a updated version
List of Python versions
Why do we bend a book to keep it straight?
Identify plant with long narrow paired leaves and reddish stems
Coloring maths inside a tcolorbox
List *all* the tuples!
How do I keep my slimes from escaping their pens?
The logistics of corpse disposal
Can a USB port passively 'listen only'?
In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?
Is there a (better) way to access $wpdb results?
Should I discuss the type of campaign with my players?
Denied boarding although I have proper visa and documentation. To whom should I make a complaint?
Inequality involving $limsup$ and $liminf$: $ liminf(a_n+1/a_n) le liminf((a_n)^(1/n)) le limsup((a_n)^(1/n)) le limsup(a_n+1/a_n)$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Root test is stronger than ratio test?Given that $a_n > 0$, prove: $liminf left(fraca_n+1a_nright)leq liminf; sqrt[n]a_nleqlimsupleft(fraca_n+1a_nright)$Do the sequences from the ratio and root tests converge to the same limit?Ratio test and the Root testShow root test is stronger than ratio testFinding limit using inequalities: $liminf fraca_n+1a_n le liminf (a_n)^ 1/nlelimsup (a_n)^ 1/nle limsup fraca_n+1a_n$Proof of limit inequalityShow that $limsup|s_n|^1over nle limsup|s_n+1over s_n|$Inequality between limits inferiorThe inequality $limsup fracc_n+1c_n geqslant limsup sqrt[n]c_n$How to work out the limit of this bounded sequence?Rudin Series ratio and root test.Inequalities involving liminf and limsupFind $limsup$ and $liminf$ of a sequence and prove $liminf a_n leq limsup a_n$.Trying to prove $liminf (A_n) subseteq limsup (A_n)$For $s_n$ a sequence in $Bbb R$, if $lim s_n$ defined as a real number, then $liminf s_n = lim s_n = limsup s_n$.Convergene of a sequence if and only if limsup and liminf agree$liminf A_n$ and $limsup B_n$$liminf a_nleq lim a_n_k leq limsup a_n$Proofs involving limsup and liminf
$begingroup$
This may have been asked before, however I was unable to find any duplicate.
This comes from pg. 52 of "Mathematical Analysis: An Introduction" by Browder. Problem 14:
If $(a_n)$ is a sequence in $mathbb R$ and $a_n > 0$ for every $n$. Then show:
$$
liminf(a_n+1/a_n) le liminf((a_n)^(1/n)) le limsup((a_n)^(1/n)) le limsup(a_n+1/a_n)$$
The middle inequality is clear. However I am having a hard time showing the ones on the left and right. (It seems like the approach should be similar for each). This is homework, so it'd be great if someone could give me a hint to get started on at least one of the inequalities.
Thanks.
real-analysis analysis inequality limsup-and-liminf
$endgroup$
add a comment |
$begingroup$
This may have been asked before, however I was unable to find any duplicate.
This comes from pg. 52 of "Mathematical Analysis: An Introduction" by Browder. Problem 14:
If $(a_n)$ is a sequence in $mathbb R$ and $a_n > 0$ for every $n$. Then show:
$$
liminf(a_n+1/a_n) le liminf((a_n)^(1/n)) le limsup((a_n)^(1/n)) le limsup(a_n+1/a_n)$$
The middle inequality is clear. However I am having a hard time showing the ones on the left and right. (It seems like the approach should be similar for each). This is homework, so it'd be great if someone could give me a hint to get started on at least one of the inequalities.
Thanks.
real-analysis analysis inequality limsup-and-liminf
$endgroup$
1
$begingroup$
It may sound somewhat unhelpful, but the best technique is usually to ditch the tricks (at least at first) and go one step at a time with the definitions for every term. After a while that you have become comfortable with the definitions, it gets a lot easier and a lot clearer how "tricks" and other techniques work.
$endgroup$
– Asaf Karagila♦
Oct 2 '11 at 23:56
$begingroup$
See also these two answers: math.stackexchange.com/questions/76743/limit-of-fraca-n1a-n/… and math.stackexchange.com/questions/28476/…
$endgroup$
– Martin Sleziak
Nov 1 '11 at 9:53
1
$begingroup$
This is also given as Problem 2.4.26 in the book Kaczor, Nowak: Problems in Mathematical Analysis. The problem is stated on p.46 and a solution is given on p.205.
$endgroup$
– Martin Sleziak
Jul 23 '12 at 5:55
1
$begingroup$
Also in Ross, Elementary Analysis 2ed p.79-80 with solution to third inequality.
$endgroup$
– user203509
May 1 '16 at 19:18
$begingroup$
Actualy you can take $ln$ on each term and use Stolz-Cesaro
$endgroup$
– Tony Ma
May 16 '18 at 11:45
add a comment |
$begingroup$
This may have been asked before, however I was unable to find any duplicate.
This comes from pg. 52 of "Mathematical Analysis: An Introduction" by Browder. Problem 14:
If $(a_n)$ is a sequence in $mathbb R$ and $a_n > 0$ for every $n$. Then show:
$$
liminf(a_n+1/a_n) le liminf((a_n)^(1/n)) le limsup((a_n)^(1/n)) le limsup(a_n+1/a_n)$$
The middle inequality is clear. However I am having a hard time showing the ones on the left and right. (It seems like the approach should be similar for each). This is homework, so it'd be great if someone could give me a hint to get started on at least one of the inequalities.
Thanks.
real-analysis analysis inequality limsup-and-liminf
$endgroup$
This may have been asked before, however I was unable to find any duplicate.
This comes from pg. 52 of "Mathematical Analysis: An Introduction" by Browder. Problem 14:
If $(a_n)$ is a sequence in $mathbb R$ and $a_n > 0$ for every $n$. Then show:
$$
liminf(a_n+1/a_n) le liminf((a_n)^(1/n)) le limsup((a_n)^(1/n)) le limsup(a_n+1/a_n)$$
The middle inequality is clear. However I am having a hard time showing the ones on the left and right. (It seems like the approach should be similar for each). This is homework, so it'd be great if someone could give me a hint to get started on at least one of the inequalities.
Thanks.
real-analysis analysis inequality limsup-and-liminf
real-analysis analysis inequality limsup-and-liminf
edited May 7 '16 at 7:42
Martin Sleziak
45k10123277
45k10123277
asked Oct 2 '11 at 23:36
RelsiarkRelsiark
9515
9515
1
$begingroup$
It may sound somewhat unhelpful, but the best technique is usually to ditch the tricks (at least at first) and go one step at a time with the definitions for every term. After a while that you have become comfortable with the definitions, it gets a lot easier and a lot clearer how "tricks" and other techniques work.
$endgroup$
– Asaf Karagila♦
Oct 2 '11 at 23:56
$begingroup$
See also these two answers: math.stackexchange.com/questions/76743/limit-of-fraca-n1a-n/… and math.stackexchange.com/questions/28476/…
$endgroup$
– Martin Sleziak
Nov 1 '11 at 9:53
1
$begingroup$
This is also given as Problem 2.4.26 in the book Kaczor, Nowak: Problems in Mathematical Analysis. The problem is stated on p.46 and a solution is given on p.205.
$endgroup$
– Martin Sleziak
Jul 23 '12 at 5:55
1
$begingroup$
Also in Ross, Elementary Analysis 2ed p.79-80 with solution to third inequality.
$endgroup$
– user203509
May 1 '16 at 19:18
$begingroup$
Actualy you can take $ln$ on each term and use Stolz-Cesaro
$endgroup$
– Tony Ma
May 16 '18 at 11:45
add a comment |
1
$begingroup$
It may sound somewhat unhelpful, but the best technique is usually to ditch the tricks (at least at first) and go one step at a time with the definitions for every term. After a while that you have become comfortable with the definitions, it gets a lot easier and a lot clearer how "tricks" and other techniques work.
$endgroup$
– Asaf Karagila♦
Oct 2 '11 at 23:56
$begingroup$
See also these two answers: math.stackexchange.com/questions/76743/limit-of-fraca-n1a-n/… and math.stackexchange.com/questions/28476/…
$endgroup$
– Martin Sleziak
Nov 1 '11 at 9:53
1
$begingroup$
This is also given as Problem 2.4.26 in the book Kaczor, Nowak: Problems in Mathematical Analysis. The problem is stated on p.46 and a solution is given on p.205.
$endgroup$
– Martin Sleziak
Jul 23 '12 at 5:55
1
$begingroup$
Also in Ross, Elementary Analysis 2ed p.79-80 with solution to third inequality.
$endgroup$
– user203509
May 1 '16 at 19:18
$begingroup$
Actualy you can take $ln$ on each term and use Stolz-Cesaro
$endgroup$
– Tony Ma
May 16 '18 at 11:45
1
1
$begingroup$
It may sound somewhat unhelpful, but the best technique is usually to ditch the tricks (at least at first) and go one step at a time with the definitions for every term. After a while that you have become comfortable with the definitions, it gets a lot easier and a lot clearer how "tricks" and other techniques work.
$endgroup$
– Asaf Karagila♦
Oct 2 '11 at 23:56
$begingroup$
It may sound somewhat unhelpful, but the best technique is usually to ditch the tricks (at least at first) and go one step at a time with the definitions for every term. After a while that you have become comfortable with the definitions, it gets a lot easier and a lot clearer how "tricks" and other techniques work.
$endgroup$
– Asaf Karagila♦
Oct 2 '11 at 23:56
$begingroup$
See also these two answers: math.stackexchange.com/questions/76743/limit-of-fraca-n1a-n/… and math.stackexchange.com/questions/28476/…
$endgroup$
– Martin Sleziak
Nov 1 '11 at 9:53
$begingroup$
See also these two answers: math.stackexchange.com/questions/76743/limit-of-fraca-n1a-n/… and math.stackexchange.com/questions/28476/…
$endgroup$
– Martin Sleziak
Nov 1 '11 at 9:53
1
1
$begingroup$
This is also given as Problem 2.4.26 in the book Kaczor, Nowak: Problems in Mathematical Analysis. The problem is stated on p.46 and a solution is given on p.205.
$endgroup$
– Martin Sleziak
Jul 23 '12 at 5:55
$begingroup$
This is also given as Problem 2.4.26 in the book Kaczor, Nowak: Problems in Mathematical Analysis. The problem is stated on p.46 and a solution is given on p.205.
$endgroup$
– Martin Sleziak
Jul 23 '12 at 5:55
1
1
$begingroup$
Also in Ross, Elementary Analysis 2ed p.79-80 with solution to third inequality.
$endgroup$
– user203509
May 1 '16 at 19:18
$begingroup$
Also in Ross, Elementary Analysis 2ed p.79-80 with solution to third inequality.
$endgroup$
– user203509
May 1 '16 at 19:18
$begingroup$
Actualy you can take $ln$ on each term and use Stolz-Cesaro
$endgroup$
– Tony Ma
May 16 '18 at 11:45
$begingroup$
Actualy you can take $ln$ on each term and use Stolz-Cesaro
$endgroup$
– Tony Ma
May 16 '18 at 11:45
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A somewhat detailed hint for the right hand side inequality:
Suppose
$$
r := lim sup fraca_n+1a_n.
$$
(If the above expression is $infty$, then there is nothing to prove. So assume $0 leq r < infty$.) Fix any $epsilon > 0$. This means that there exists $N$ such that for $n geq N$, we have
$$
fraca_n+1a_n leq r + epsilon.
$$
From this, can you deduce that for $n geq N$, we have
$$
fraca_na_N leq (r+epsilon)^n-N?
$$
Rearranging a bit,
$$
a_n leq (r+epsilon)^n left( fraca_N(r+epsilon)^N right),
$$
so that
$$
a_n^1/n leq (r+epsilon) left( fraca_N(r+epsilon)^N right)^1/n.
$$
Can you take it from here?
You do not have to work so hard for the left hand side inequality: there is a simple way to obtain the left hand side inequality using the right hand side one in a black-box way. I will leave you to figure it out.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f69386%2finequality-involving-limsup-and-liminf-liminfa-n1-a-n-le-liminf%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A somewhat detailed hint for the right hand side inequality:
Suppose
$$
r := lim sup fraca_n+1a_n.
$$
(If the above expression is $infty$, then there is nothing to prove. So assume $0 leq r < infty$.) Fix any $epsilon > 0$. This means that there exists $N$ such that for $n geq N$, we have
$$
fraca_n+1a_n leq r + epsilon.
$$
From this, can you deduce that for $n geq N$, we have
$$
fraca_na_N leq (r+epsilon)^n-N?
$$
Rearranging a bit,
$$
a_n leq (r+epsilon)^n left( fraca_N(r+epsilon)^N right),
$$
so that
$$
a_n^1/n leq (r+epsilon) left( fraca_N(r+epsilon)^N right)^1/n.
$$
Can you take it from here?
You do not have to work so hard for the left hand side inequality: there is a simple way to obtain the left hand side inequality using the right hand side one in a black-box way. I will leave you to figure it out.
$endgroup$
add a comment |
$begingroup$
A somewhat detailed hint for the right hand side inequality:
Suppose
$$
r := lim sup fraca_n+1a_n.
$$
(If the above expression is $infty$, then there is nothing to prove. So assume $0 leq r < infty$.) Fix any $epsilon > 0$. This means that there exists $N$ such that for $n geq N$, we have
$$
fraca_n+1a_n leq r + epsilon.
$$
From this, can you deduce that for $n geq N$, we have
$$
fraca_na_N leq (r+epsilon)^n-N?
$$
Rearranging a bit,
$$
a_n leq (r+epsilon)^n left( fraca_N(r+epsilon)^N right),
$$
so that
$$
a_n^1/n leq (r+epsilon) left( fraca_N(r+epsilon)^N right)^1/n.
$$
Can you take it from here?
You do not have to work so hard for the left hand side inequality: there is a simple way to obtain the left hand side inequality using the right hand side one in a black-box way. I will leave you to figure it out.
$endgroup$
add a comment |
$begingroup$
A somewhat detailed hint for the right hand side inequality:
Suppose
$$
r := lim sup fraca_n+1a_n.
$$
(If the above expression is $infty$, then there is nothing to prove. So assume $0 leq r < infty$.) Fix any $epsilon > 0$. This means that there exists $N$ such that for $n geq N$, we have
$$
fraca_n+1a_n leq r + epsilon.
$$
From this, can you deduce that for $n geq N$, we have
$$
fraca_na_N leq (r+epsilon)^n-N?
$$
Rearranging a bit,
$$
a_n leq (r+epsilon)^n left( fraca_N(r+epsilon)^N right),
$$
so that
$$
a_n^1/n leq (r+epsilon) left( fraca_N(r+epsilon)^N right)^1/n.
$$
Can you take it from here?
You do not have to work so hard for the left hand side inequality: there is a simple way to obtain the left hand side inequality using the right hand side one in a black-box way. I will leave you to figure it out.
$endgroup$
A somewhat detailed hint for the right hand side inequality:
Suppose
$$
r := lim sup fraca_n+1a_n.
$$
(If the above expression is $infty$, then there is nothing to prove. So assume $0 leq r < infty$.) Fix any $epsilon > 0$. This means that there exists $N$ such that for $n geq N$, we have
$$
fraca_n+1a_n leq r + epsilon.
$$
From this, can you deduce that for $n geq N$, we have
$$
fraca_na_N leq (r+epsilon)^n-N?
$$
Rearranging a bit,
$$
a_n leq (r+epsilon)^n left( fraca_N(r+epsilon)^N right),
$$
so that
$$
a_n^1/n leq (r+epsilon) left( fraca_N(r+epsilon)^N right)^1/n.
$$
Can you take it from here?
You do not have to work so hard for the left hand side inequality: there is a simple way to obtain the left hand side inequality using the right hand side one in a black-box way. I will leave you to figure it out.
answered Oct 2 '11 at 23:51
SrivatsanSrivatsan
21.1k371126
21.1k371126
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f69386%2finequality-involving-limsup-and-liminf-liminfa-n1-a-n-le-liminf%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
It may sound somewhat unhelpful, but the best technique is usually to ditch the tricks (at least at first) and go one step at a time with the definitions for every term. After a while that you have become comfortable with the definitions, it gets a lot easier and a lot clearer how "tricks" and other techniques work.
$endgroup$
– Asaf Karagila♦
Oct 2 '11 at 23:56
$begingroup$
See also these two answers: math.stackexchange.com/questions/76743/limit-of-fraca-n1a-n/… and math.stackexchange.com/questions/28476/…
$endgroup$
– Martin Sleziak
Nov 1 '11 at 9:53
1
$begingroup$
This is also given as Problem 2.4.26 in the book Kaczor, Nowak: Problems in Mathematical Analysis. The problem is stated on p.46 and a solution is given on p.205.
$endgroup$
– Martin Sleziak
Jul 23 '12 at 5:55
1
$begingroup$
Also in Ross, Elementary Analysis 2ed p.79-80 with solution to third inequality.
$endgroup$
– user203509
May 1 '16 at 19:18
$begingroup$
Actualy you can take $ln$ on each term and use Stolz-Cesaro
$endgroup$
– Tony Ma
May 16 '18 at 11:45