How to represent $sumlimits_n=0^infty a_knz^kn$ in terms of $f(z) = sumlimits_n=0^infty a_nz^n$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)What would be the radius of convergence of $sumlimits_n=0^infty z^3^n$?Confusion on complex power seriesRadius of convergence two power series (by using Cauchy test).Radius of Convergence of $ sumlimits_n=2^infty pi(n) z^n$How to compute a radius of convergence?Power series as an integral of $sum_n=0^infty fraca_nn!z^n$Find sum of power series $sum_n=0^infty (-1)^n(n+1)^2x^n$Radius of convergence of $sum_n=0^infty a_nz^n^2$Explanation on differentiating power seriesRadius of convergence of $,x^2big(1+sum_n=1^inftyfrac(-1)^n(2n)!2^2n-1x^2nbig)$

Why do people hide their license plates in the EU?

Identifying polygons that intersect with another layer using QGIS?

Can a non-EU citizen traveling with me come with me through the EU passport line?

2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

English words in a non-english sci-fi novel

Can any chord be converted to its roman numeral equivalent?

Identify plant with long narrow paired leaves and reddish stems

prime numbers and expressing non-prime numbers

List *all* the tuples!

What would be the ideal power source for a cybernetic eye?

Overriding an object in memory with placement new

What is the role of the transistor and diode in a soft start circuit?

Why didn't this character "real die" when they blew their stack out in Altered Carbon?

porting install scripts : can rpm replace apt?

3 doors, three guards, one stone

Why light coming from distant stars is not discreet?

What LEGO pieces have "real-world" functionality?

How do pianists reach extremely loud dynamics?

Why aren't air breathing engines used as small first stages

Using et al. for a last / senior author rather than for a first author

What causes the vertical darker bands in my photo?

How to react to hostile behavior from a senior developer?

Should I use a zero-interest credit card for a large one-time purchase?



How to represent $sumlimits_n=0^infty a_knz^kn$ in terms of $f(z) = sumlimits_n=0^infty a_nz^n$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)What would be the radius of convergence of $sumlimits_n=0^infty z^3^n$?Confusion on complex power seriesRadius of convergence two power series (by using Cauchy test).Radius of Convergence of $ sumlimits_n=2^infty pi(n) z^n$How to compute a radius of convergence?Power series as an integral of $sum_n=0^infty fraca_nn!z^n$Find sum of power series $sum_n=0^infty (-1)^n(n+1)^2x^n$Radius of convergence of $sum_n=0^infty a_nz^n^2$Explanation on differentiating power seriesRadius of convergence of $,x^2big(1+sum_n=1^inftyfrac(-1)^n(2n)!2^2n-1x^2nbig)$










3












$begingroup$


Given a power series $f(z) = sumlimits_n=0^infty a_nz^n$ where $zin mathbbC$ and radius of convergence $R.$ Then my goal is to find,
$$sum_n=0^infty a_knz^kn$$
for $|z|<R$ and $kin mathbbN.$



So I tried two examples and I think there is a connection with roots of unity.
beginalign*
sum_n=0^infty a_2nz^2n &=frac12(f(z)+f(i^2z))\
sum_n=0^infty a_3nz^3n &=frac12(f(z)+f(iz) + f(i^2z))
endalign*

My guess is that
$$sum_n=0^infty a_knz^kn =frac12(f(z)+f(iz) + f(i^2z)+ cdots + f(i^k-1z))$$
if $k$ is odd. For $k$ even I am not sure. Any generalizations of this fact or proof ideas will be much appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    What is $n$? An integer? A number ranging from $-infty$ up to $infty$? Or just starting by $0$ up to $infty$?
    $endgroup$
    – mrtaurho
    Apr 1 at 7:18










  • $begingroup$
    Starting from $0$ and upto infinity.
    $endgroup$
    – model_checker
    Apr 1 at 7:18











  • $begingroup$
    Your formula for $sum a_3n z^3n$ is not correct.
    $endgroup$
    – Kavi Rama Murthy
    Apr 1 at 7:24
















3












$begingroup$


Given a power series $f(z) = sumlimits_n=0^infty a_nz^n$ where $zin mathbbC$ and radius of convergence $R.$ Then my goal is to find,
$$sum_n=0^infty a_knz^kn$$
for $|z|<R$ and $kin mathbbN.$



So I tried two examples and I think there is a connection with roots of unity.
beginalign*
sum_n=0^infty a_2nz^2n &=frac12(f(z)+f(i^2z))\
sum_n=0^infty a_3nz^3n &=frac12(f(z)+f(iz) + f(i^2z))
endalign*

My guess is that
$$sum_n=0^infty a_knz^kn =frac12(f(z)+f(iz) + f(i^2z)+ cdots + f(i^k-1z))$$
if $k$ is odd. For $k$ even I am not sure. Any generalizations of this fact or proof ideas will be much appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    What is $n$? An integer? A number ranging from $-infty$ up to $infty$? Or just starting by $0$ up to $infty$?
    $endgroup$
    – mrtaurho
    Apr 1 at 7:18










  • $begingroup$
    Starting from $0$ and upto infinity.
    $endgroup$
    – model_checker
    Apr 1 at 7:18











  • $begingroup$
    Your formula for $sum a_3n z^3n$ is not correct.
    $endgroup$
    – Kavi Rama Murthy
    Apr 1 at 7:24














3












3








3





$begingroup$


Given a power series $f(z) = sumlimits_n=0^infty a_nz^n$ where $zin mathbbC$ and radius of convergence $R.$ Then my goal is to find,
$$sum_n=0^infty a_knz^kn$$
for $|z|<R$ and $kin mathbbN.$



So I tried two examples and I think there is a connection with roots of unity.
beginalign*
sum_n=0^infty a_2nz^2n &=frac12(f(z)+f(i^2z))\
sum_n=0^infty a_3nz^3n &=frac12(f(z)+f(iz) + f(i^2z))
endalign*

My guess is that
$$sum_n=0^infty a_knz^kn =frac12(f(z)+f(iz) + f(i^2z)+ cdots + f(i^k-1z))$$
if $k$ is odd. For $k$ even I am not sure. Any generalizations of this fact or proof ideas will be much appreciated.










share|cite|improve this question











$endgroup$




Given a power series $f(z) = sumlimits_n=0^infty a_nz^n$ where $zin mathbbC$ and radius of convergence $R.$ Then my goal is to find,
$$sum_n=0^infty a_knz^kn$$
for $|z|<R$ and $kin mathbbN.$



So I tried two examples and I think there is a connection with roots of unity.
beginalign*
sum_n=0^infty a_2nz^2n &=frac12(f(z)+f(i^2z))\
sum_n=0^infty a_3nz^3n &=frac12(f(z)+f(iz) + f(i^2z))
endalign*

My guess is that
$$sum_n=0^infty a_knz^kn =frac12(f(z)+f(iz) + f(i^2z)+ cdots + f(i^k-1z))$$
if $k$ is odd. For $k$ even I am not sure. Any generalizations of this fact or proof ideas will be much appreciated.







complex-analysis power-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 1 at 7:47









Martin R

31k33561




31k33561










asked Apr 1 at 7:15









model_checkermodel_checker

4,45521931




4,45521931











  • $begingroup$
    What is $n$? An integer? A number ranging from $-infty$ up to $infty$? Or just starting by $0$ up to $infty$?
    $endgroup$
    – mrtaurho
    Apr 1 at 7:18










  • $begingroup$
    Starting from $0$ and upto infinity.
    $endgroup$
    – model_checker
    Apr 1 at 7:18











  • $begingroup$
    Your formula for $sum a_3n z^3n$ is not correct.
    $endgroup$
    – Kavi Rama Murthy
    Apr 1 at 7:24

















  • $begingroup$
    What is $n$? An integer? A number ranging from $-infty$ up to $infty$? Or just starting by $0$ up to $infty$?
    $endgroup$
    – mrtaurho
    Apr 1 at 7:18










  • $begingroup$
    Starting from $0$ and upto infinity.
    $endgroup$
    – model_checker
    Apr 1 at 7:18











  • $begingroup$
    Your formula for $sum a_3n z^3n$ is not correct.
    $endgroup$
    – Kavi Rama Murthy
    Apr 1 at 7:24
















$begingroup$
What is $n$? An integer? A number ranging from $-infty$ up to $infty$? Or just starting by $0$ up to $infty$?
$endgroup$
– mrtaurho
Apr 1 at 7:18




$begingroup$
What is $n$? An integer? A number ranging from $-infty$ up to $infty$? Or just starting by $0$ up to $infty$?
$endgroup$
– mrtaurho
Apr 1 at 7:18












$begingroup$
Starting from $0$ and upto infinity.
$endgroup$
– model_checker
Apr 1 at 7:18





$begingroup$
Starting from $0$ and upto infinity.
$endgroup$
– model_checker
Apr 1 at 7:18













$begingroup$
Your formula for $sum a_3n z^3n$ is not correct.
$endgroup$
– Kavi Rama Murthy
Apr 1 at 7:24





$begingroup$
Your formula for $sum a_3n z^3n$ is not correct.
$endgroup$
– Kavi Rama Murthy
Apr 1 at 7:24











1 Answer
1






active

oldest

votes


















3












$begingroup$

Let $omega ne 1$ be a $k$-th root of unity: $omega^k = 1$. Then
$$
sum_j=0^k-1 omega^nj = begincases
k & text if $n$ is a multiple of $k$, \
0 & text otherwise.
endcases
$$

Consequently,
$$
frac 1k sum_j=0^k-1 f(omega^j z ) = sum_n=0^infty a_knz^kn
$$



For $k=2$ this gives your result
$$
sum_n=0^infty a_2nz^2n =frac12(f(z)+f(-z))\
$$

For $k=3$ the correct result is
$$
sum_n=0^infty a_3nz^3n =frac13(f(z)+f(omega z) + f(omega^2 z))
$$

with $omega = - frac 12 pm fracsqrt 32$.






share|cite|improve this answer











$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170302%2fhow-to-represent-sum-limits-n-0-infty-a-knzkn-in-terms-of-fz-su%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Let $omega ne 1$ be a $k$-th root of unity: $omega^k = 1$. Then
    $$
    sum_j=0^k-1 omega^nj = begincases
    k & text if $n$ is a multiple of $k$, \
    0 & text otherwise.
    endcases
    $$

    Consequently,
    $$
    frac 1k sum_j=0^k-1 f(omega^j z ) = sum_n=0^infty a_knz^kn
    $$



    For $k=2$ this gives your result
    $$
    sum_n=0^infty a_2nz^2n =frac12(f(z)+f(-z))\
    $$

    For $k=3$ the correct result is
    $$
    sum_n=0^infty a_3nz^3n =frac13(f(z)+f(omega z) + f(omega^2 z))
    $$

    with $omega = - frac 12 pm fracsqrt 32$.






    share|cite|improve this answer











    $endgroup$

















      3












      $begingroup$

      Let $omega ne 1$ be a $k$-th root of unity: $omega^k = 1$. Then
      $$
      sum_j=0^k-1 omega^nj = begincases
      k & text if $n$ is a multiple of $k$, \
      0 & text otherwise.
      endcases
      $$

      Consequently,
      $$
      frac 1k sum_j=0^k-1 f(omega^j z ) = sum_n=0^infty a_knz^kn
      $$



      For $k=2$ this gives your result
      $$
      sum_n=0^infty a_2nz^2n =frac12(f(z)+f(-z))\
      $$

      For $k=3$ the correct result is
      $$
      sum_n=0^infty a_3nz^3n =frac13(f(z)+f(omega z) + f(omega^2 z))
      $$

      with $omega = - frac 12 pm fracsqrt 32$.






      share|cite|improve this answer











      $endgroup$















        3












        3








        3





        $begingroup$

        Let $omega ne 1$ be a $k$-th root of unity: $omega^k = 1$. Then
        $$
        sum_j=0^k-1 omega^nj = begincases
        k & text if $n$ is a multiple of $k$, \
        0 & text otherwise.
        endcases
        $$

        Consequently,
        $$
        frac 1k sum_j=0^k-1 f(omega^j z ) = sum_n=0^infty a_knz^kn
        $$



        For $k=2$ this gives your result
        $$
        sum_n=0^infty a_2nz^2n =frac12(f(z)+f(-z))\
        $$

        For $k=3$ the correct result is
        $$
        sum_n=0^infty a_3nz^3n =frac13(f(z)+f(omega z) + f(omega^2 z))
        $$

        with $omega = - frac 12 pm fracsqrt 32$.






        share|cite|improve this answer











        $endgroup$



        Let $omega ne 1$ be a $k$-th root of unity: $omega^k = 1$. Then
        $$
        sum_j=0^k-1 omega^nj = begincases
        k & text if $n$ is a multiple of $k$, \
        0 & text otherwise.
        endcases
        $$

        Consequently,
        $$
        frac 1k sum_j=0^k-1 f(omega^j z ) = sum_n=0^infty a_knz^kn
        $$



        For $k=2$ this gives your result
        $$
        sum_n=0^infty a_2nz^2n =frac12(f(z)+f(-z))\
        $$

        For $k=3$ the correct result is
        $$
        sum_n=0^infty a_3nz^3n =frac13(f(z)+f(omega z) + f(omega^2 z))
        $$

        with $omega = - frac 12 pm fracsqrt 32$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 1 at 7:33

























        answered Apr 1 at 7:28









        Martin RMartin R

        31k33561




        31k33561



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170302%2fhow-to-represent-sum-limits-n-0-infty-a-knzkn-in-terms-of-fz-su%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

            Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε