Prove $sum_k2kchoose k^22left(n-kright)choose n-k^2=sum_k(-1)^k16^kn-k choose k2left(n-kright)choose n-k^3$Show there’s at most $nchoose left lfloorfracn2 rightrfloor$ subsets $Asubset[n]$ such that $displaystylesumlimits_iinA a_i=alpha$Proof that $left(sum^n_k=1x_kright)left(sum^n_k=1y_kright)geq n^2$Combinatorics proof of “sum of (k choose m) with k from m up to n is equal to n+1 choose m+1”Showing $n + a - 1 choose a - 1 = sum_k = 0^leftlfloor n/2 rightrfloor a choose n-2kk+a-1 choose a-1$A comprehensive problem about $sum fracncosh left( nx right)sinh left( npi right) $Showing that $ leftlfloor fracn-12rightrfloor +leftlfloor fracn+24rightrfloor + leftlfloorfracn+44 rightrfloor =n$How to evaluate this sum $sumlimits_i=1^n left lfloor sqrt2 cdot i right rfloor$Prove $2nchoose0 + 2nchoose2 + dots + 2nchoose2n = 2^2n-1$How many $m$ such that : $sumlimits_k=1^m leftlfloorfracmkrightrfloor$ be even?Double sum over $leftlfloorac+bdover krightrfloor$

Can the Produce Flame cantrip be used to grapple, or as an unarmed strike, in the right circumstances?

How would photo IDs work for shapeshifters?

Copycat chess is back

Patience, young "Padovan"

Does it makes sense to buy a new cycle to learn riding?

What is the meaning of "of trouble" in the following sentence?

Is there a familial term for apples and pears?

Could a US political party gain complete control over the government by removing checks & balances?

Why was the "bread communication" in the arena of Catching Fire left out in the movie?

A poker game description that does not feel gimmicky

COUNT(*) or MAX(id) - which is faster?

Why do we use polarized capacitors?

Does a dangling wire really electrocute me if I'm standing in water?

How can I add custom success page

Is this food a bread or a loaf?

Lied on resume at previous job

Can I find out the caloric content of bread by dehydrating it?

How could a lack of term limits lead to a "dictatorship?"

Are objects structures and/or vice versa?

Is there a way to make member function NOT callable from constructor?

How do I create uniquely male characters?

Can a planet have a different gravitational pull depending on its location in orbit around its sun?

What is it called when one voice type sings a 'solo'?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?



Prove $sum_k2kchoose k^22left(n-kright)choose n-k^2=sum_k(-1)^k16^kn-k choose k2left(n-kright)choose n-k^3$


Show there’s at most $nchoose left lfloorfracn2 rightrfloor$ subsets $Asubset[n]$ such that $displaystylesumlimits_iinA a_i=alpha$Proof that $left(sum^n_k=1x_kright)left(sum^n_k=1y_kright)geq n^2$Combinatorics proof of “sum of (k choose m) with k from m up to n is equal to n+1 choose m+1”Showing $n + a - 1 choose a - 1 = sum_k = 0^leftlfloor n/2 rightrfloor a choose n-2kk+a-1 choose a-1$A comprehensive problem about $sum fracncosh left( nx right)sinh left( npi right) $Showing that $ leftlfloor fracn-12rightrfloor +leftlfloor fracn+24rightrfloor + leftlfloorfracn+44 rightrfloor =n$How to evaluate this sum $sumlimits_i=1^n left lfloor sqrt2 cdot i right rfloor$Prove $2nchoose0 + 2nchoose2 + dots + 2nchoose2n = 2^2n-1$How many $m$ such that : $sumlimits_k=1^m leftlfloorfracmkrightrfloor$ be even?Double sum over $leftlfloorac+bdover krightrfloor$













7












$begingroup$


So I've come across this one :



$$forall ninmathbbN,sumlimits_k=0^nleft[2kchoose k2left(n-kright)choose n-kright]^2=sumlimits_k=0^leftlfloorfracn2rightrfloorleft(-1right)^k16^kn-k choose k2left(n-kright)choose n-k^3$$
It looks nice, but since I am not really familiar with combinatorics, I have no clue as how to prove it.



What would you suggest ?










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    So I've come across this one :



    $$forall ninmathbbN,sumlimits_k=0^nleft[2kchoose k2left(n-kright)choose n-kright]^2=sumlimits_k=0^leftlfloorfracn2rightrfloorleft(-1right)^k16^kn-k choose k2left(n-kright)choose n-k^3$$
    It looks nice, but since I am not really familiar with combinatorics, I have no clue as how to prove it.



    What would you suggest ?










    share|cite|improve this question











    $endgroup$














      7












      7








      7


      4



      $begingroup$


      So I've come across this one :



      $$forall ninmathbbN,sumlimits_k=0^nleft[2kchoose k2left(n-kright)choose n-kright]^2=sumlimits_k=0^leftlfloorfracn2rightrfloorleft(-1right)^k16^kn-k choose k2left(n-kright)choose n-k^3$$
      It looks nice, but since I am not really familiar with combinatorics, I have no clue as how to prove it.



      What would you suggest ?










      share|cite|improve this question











      $endgroup$




      So I've come across this one :



      $$forall ninmathbbN,sumlimits_k=0^nleft[2kchoose k2left(n-kright)choose n-kright]^2=sumlimits_k=0^leftlfloorfracn2rightrfloorleft(-1right)^k16^kn-k choose k2left(n-kright)choose n-k^3$$
      It looks nice, but since I am not really familiar with combinatorics, I have no clue as how to prove it.



      What would you suggest ?







      calculus combinatorics summation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 30 at 3:30









      Mike Earnest

      27.3k22152




      27.3k22152










      asked Mar 17 at 16:22









      Harmonic SunHarmonic Sun

      71710




      71710




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Not an answer but too long for a comment. The Maple sumtools
          package features an implementation of Zeilberger's algorithm, exported
          through the sumrecursion command. This will produce the same
          recurrence for the LHS and the RHS. Then we just need to check the two
          initial values. This is the Maple transcript.




          > with(sumtools);
          [Hypersum, Sumtohyper, extended_gosper, gosper, hyperrecursion, hypersum,

          hyperterm, simpcomb, sumrecursion, sumtohyper]

          > sumrecursion(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k,S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > sumrecursion((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k, S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > A := n -> add(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k=0..n);
          2 2
          A := n -> add(binomial(2 k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(A(n), n=1..5);
          8, 88, 1088, 14296, 195008

          > B := n -> add((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k=0..n);
          B := n ->

          k k 3
          add((-1) 16 binomial(n - k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(B(n), n=1..5);
          8, 88, 1088, 14296, 195008


          The common recurrence is



          $$256, left( n-1 right) ^3S left( n-2 right) -8, left( 2,n-1
          right) left( 2,n^2-2,n+1 right) S left( n-1 right) +S
          left( n right) n^3 = 0.$$



          This is a classic example from the foreword to the book A=B by
          Petkovsek, Wilf, and Zeilberger, and identified as such at OEIS
          A036917.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            I think this is an answer! It gives an inductive proof of the equation.
            $endgroup$
            – Mike Earnest
            Mar 20 at 18:53






          • 1




            $begingroup$
            @MikeEarnest Should not the recurrence formula be proven in an uderstandable way?
            $endgroup$
            – user
            Mar 20 at 23:35












          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151733%2fprove-sum-k2k-choose-k22-leftn-k-right-choose-n-k2-sum-k-1k16kn%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          Not an answer but too long for a comment. The Maple sumtools
          package features an implementation of Zeilberger's algorithm, exported
          through the sumrecursion command. This will produce the same
          recurrence for the LHS and the RHS. Then we just need to check the two
          initial values. This is the Maple transcript.




          > with(sumtools);
          [Hypersum, Sumtohyper, extended_gosper, gosper, hyperrecursion, hypersum,

          hyperterm, simpcomb, sumrecursion, sumtohyper]

          > sumrecursion(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k,S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > sumrecursion((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k, S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > A := n -> add(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k=0..n);
          2 2
          A := n -> add(binomial(2 k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(A(n), n=1..5);
          8, 88, 1088, 14296, 195008

          > B := n -> add((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k=0..n);
          B := n ->

          k k 3
          add((-1) 16 binomial(n - k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(B(n), n=1..5);
          8, 88, 1088, 14296, 195008


          The common recurrence is



          $$256, left( n-1 right) ^3S left( n-2 right) -8, left( 2,n-1
          right) left( 2,n^2-2,n+1 right) S left( n-1 right) +S
          left( n right) n^3 = 0.$$



          This is a classic example from the foreword to the book A=B by
          Petkovsek, Wilf, and Zeilberger, and identified as such at OEIS
          A036917.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            I think this is an answer! It gives an inductive proof of the equation.
            $endgroup$
            – Mike Earnest
            Mar 20 at 18:53






          • 1




            $begingroup$
            @MikeEarnest Should not the recurrence formula be proven in an uderstandable way?
            $endgroup$
            – user
            Mar 20 at 23:35
















          3












          $begingroup$

          Not an answer but too long for a comment. The Maple sumtools
          package features an implementation of Zeilberger's algorithm, exported
          through the sumrecursion command. This will produce the same
          recurrence for the LHS and the RHS. Then we just need to check the two
          initial values. This is the Maple transcript.




          > with(sumtools);
          [Hypersum, Sumtohyper, extended_gosper, gosper, hyperrecursion, hypersum,

          hyperterm, simpcomb, sumrecursion, sumtohyper]

          > sumrecursion(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k,S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > sumrecursion((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k, S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > A := n -> add(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k=0..n);
          2 2
          A := n -> add(binomial(2 k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(A(n), n=1..5);
          8, 88, 1088, 14296, 195008

          > B := n -> add((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k=0..n);
          B := n ->

          k k 3
          add((-1) 16 binomial(n - k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(B(n), n=1..5);
          8, 88, 1088, 14296, 195008


          The common recurrence is



          $$256, left( n-1 right) ^3S left( n-2 right) -8, left( 2,n-1
          right) left( 2,n^2-2,n+1 right) S left( n-1 right) +S
          left( n right) n^3 = 0.$$



          This is a classic example from the foreword to the book A=B by
          Petkovsek, Wilf, and Zeilberger, and identified as such at OEIS
          A036917.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            I think this is an answer! It gives an inductive proof of the equation.
            $endgroup$
            – Mike Earnest
            Mar 20 at 18:53






          • 1




            $begingroup$
            @MikeEarnest Should not the recurrence formula be proven in an uderstandable way?
            $endgroup$
            – user
            Mar 20 at 23:35














          3












          3








          3





          $begingroup$

          Not an answer but too long for a comment. The Maple sumtools
          package features an implementation of Zeilberger's algorithm, exported
          through the sumrecursion command. This will produce the same
          recurrence for the LHS and the RHS. Then we just need to check the two
          initial values. This is the Maple transcript.




          > with(sumtools);
          [Hypersum, Sumtohyper, extended_gosper, gosper, hyperrecursion, hypersum,

          hyperterm, simpcomb, sumrecursion, sumtohyper]

          > sumrecursion(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k,S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > sumrecursion((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k, S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > A := n -> add(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k=0..n);
          2 2
          A := n -> add(binomial(2 k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(A(n), n=1..5);
          8, 88, 1088, 14296, 195008

          > B := n -> add((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k=0..n);
          B := n ->

          k k 3
          add((-1) 16 binomial(n - k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(B(n), n=1..5);
          8, 88, 1088, 14296, 195008


          The common recurrence is



          $$256, left( n-1 right) ^3S left( n-2 right) -8, left( 2,n-1
          right) left( 2,n^2-2,n+1 right) S left( n-1 right) +S
          left( n right) n^3 = 0.$$



          This is a classic example from the foreword to the book A=B by
          Petkovsek, Wilf, and Zeilberger, and identified as such at OEIS
          A036917.






          share|cite|improve this answer











          $endgroup$



          Not an answer but too long for a comment. The Maple sumtools
          package features an implementation of Zeilberger's algorithm, exported
          through the sumrecursion command. This will produce the same
          recurrence for the LHS and the RHS. Then we just need to check the two
          initial values. This is the Maple transcript.




          > with(sumtools);
          [Hypersum, Sumtohyper, extended_gosper, gosper, hyperrecursion, hypersum,

          hyperterm, simpcomb, sumrecursion, sumtohyper]

          > sumrecursion(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k,S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > sumrecursion((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k, S(n));
          3 2 3
          256 (n - 1) S(-2 + n) - 8 (2 n - 1) (2 n - 2 n + 1) S(n - 1) + S(n) n

          > A := n -> add(binomial(2*k,k)^2*binomial(2*n-2*k,n-k)^2, k=0..n);
          2 2
          A := n -> add(binomial(2 k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(A(n), n=1..5);
          8, 88, 1088, 14296, 195008

          > B := n -> add((-1)^k*16^k*binomial(n-k,k)*binomial(2*n-2*k,n-k)^3, k=0..n);
          B := n ->

          k k 3
          add((-1) 16 binomial(n - k, k) binomial(2 n - 2 k, n - k) , k = 0 .. n)

          > seq(B(n), n=1..5);
          8, 88, 1088, 14296, 195008


          The common recurrence is



          $$256, left( n-1 right) ^3S left( n-2 right) -8, left( 2,n-1
          right) left( 2,n^2-2,n+1 right) S left( n-1 right) +S
          left( n right) n^3 = 0.$$



          This is a classic example from the foreword to the book A=B by
          Petkovsek, Wilf, and Zeilberger, and identified as such at OEIS
          A036917.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 20 at 18:30

























          answered Mar 20 at 18:20









          Marko RiedelMarko Riedel

          41.3k340111




          41.3k340111







          • 1




            $begingroup$
            I think this is an answer! It gives an inductive proof of the equation.
            $endgroup$
            – Mike Earnest
            Mar 20 at 18:53






          • 1




            $begingroup$
            @MikeEarnest Should not the recurrence formula be proven in an uderstandable way?
            $endgroup$
            – user
            Mar 20 at 23:35













          • 1




            $begingroup$
            I think this is an answer! It gives an inductive proof of the equation.
            $endgroup$
            – Mike Earnest
            Mar 20 at 18:53






          • 1




            $begingroup$
            @MikeEarnest Should not the recurrence formula be proven in an uderstandable way?
            $endgroup$
            – user
            Mar 20 at 23:35








          1




          1




          $begingroup$
          I think this is an answer! It gives an inductive proof of the equation.
          $endgroup$
          – Mike Earnest
          Mar 20 at 18:53




          $begingroup$
          I think this is an answer! It gives an inductive proof of the equation.
          $endgroup$
          – Mike Earnest
          Mar 20 at 18:53




          1




          1




          $begingroup$
          @MikeEarnest Should not the recurrence formula be proven in an uderstandable way?
          $endgroup$
          – user
          Mar 20 at 23:35





          $begingroup$
          @MikeEarnest Should not the recurrence formula be proven in an uderstandable way?
          $endgroup$
          – user
          Mar 20 at 23:35


















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3151733%2fprove-sum-k2k-choose-k22-leftn-k-right-choose-n-k2-sum-k-1k16kn%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Ingelân Ynhâld Etymology | Geografy | Skiednis | Polityk en bestjoer | Ekonomy | Demografy | Kultuer | Klimaat | Sjoch ek | Keppelings om utens | Boarnen, noaten en referinsjes Navigaasjemenuwww.gov.ukOffisjele webside fan it regear fan it Feriene KeninkrykOffisjele webside fan it Britske FerkearsburoNederlânsktalige ynformaasje fan it Britske FerkearsburoOffisjele webside fan English Heritage, de organisaasje dy't him ynset foar it behâld fan it Ingelske kultuergoedYnwennertallen fan alle Britske stêden út 'e folkstelling fan 2011Notes en References, op dizze sideEngland

          Հադիս Բովանդակություն Անվանում և նշանակություն | Դասակարգում | Աղբյուրներ | Նավարկման ցանկ