Skip to main content

1175 Ynhâld Foarfallen | Berne | Ferstoarn | Boarnen, noaten en referinsjes Navigaasjemenu1175

117512e iuw













1175




Ut Wikipedy






Jump to navigation
Jump to search



























Iuwen:

7e

8e

9e

10e

11e

12e iuw

13e

14e

15e

16e

17e
Jierren:

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180






























Calendar-nl.pngKalinders

Gregoriaanske kalinder
1175
MCLXXV

Ab urbe condita
1928

Armeenske kalinder
624

ԹՎ ՈԻԴ



Etiopyske kalinder
1167 – 1168

Hebriuwske kalinder
4935 – 4936

Hindoekalinders

- Vikram Samvat
1230 – 1231
- Shaka Samvat
1097 – 1098
- Kali Yuga
4276 – 4277

Iraanske kalinder
553 – 554

Islamityske kalinder
570 – 570

Juliaanske kalinder
 Crystal 128 date.png
1175
MCLXXV

Sineeske kalinder
3871 – 3872

辛午 – 壬未


1175 is in gewoan jier dat begjint mei in woansdei. (Juliaanske kalinder foar 1175.)




Ynhâld





  • 1 Foarfallen


  • 2 Berne


  • 3 Ferstoarn


  • 4 Boarnen, noaten en referinsjes




Foarfallen |


  • It wurk fan Ptolemaeus wurdt oersetten en men wist doe hielendal seker dat de ierde bol wie.

  • Folsleine moannefertsjustering falt tagelyk mei Halloween, de earstkommende kear dat dit wer bart is 2897.


Berne |


datum ûnbekend
  • hartoch Freark I fan Eastenryk († 1198)


  • Ingeboarch fan Denemark, keninginne fan Frankryk († 1236)

  • keizer Otto IV fan it Hillige Roomske Ryk († 1218)


  • Roger III fan Sisylje, hartoch fan Apúlje († 1194)


  • Michael Scot, Skotsk wiskundige en astrolooch († 1232)


Ferstoarn |



  • 3 maart - Freark fan Hallum, Frysk abt en hillige (* ±1113)


  • 15 maaie - Mleh fan Armeenje, hear fan Armeensk-Silysje (* <1120)



























Jierren:

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

Iuwen:

7e

8e

9e

10e

11e

12e iuw

13e

14e

15e

16e

17e


Boarnen, noaten en referinsjes




Boarnen, noaten en/as referinsjes:


Commons





Untfongen fan "https://fy.wikipedia.org/w/index.php?title=1175&oldid=925404"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.096","walltime":"0.113","ppvisitednodes":"value":1324,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":17905,"limit":2097152,"templateargumentsize":"value":1616,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 73.133 1 -total"," 42.54% 31.112 1 Berjocht:Kalinders"," 34.13% 24.957 1 Berjocht:JiersideBoppe"," 19.77% 14.462 2 Berjocht:IuwPart"," 16.10% 11.774 2 Berjocht:JierPart"," 9.46% 6.922 1 Berjocht:JiersideUnder"," 7.00% 5.123 1 Berjocht:Boarnen"," 6.31% 4.612 1 Berjocht:Kalinderjier"," 6.11% 4.468 2 Berjocht:Romeinsk"," 4.46% 3.259 1 Berjocht:Armeenskal"],"cachereport":"origin":"mw1266","timestamp":"20190320032544","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"1175","url":"https://fy.wikipedia.org/wiki/1175","sameAs":"http://www.wikidata.org/entity/Q19692","mainEntity":"http://www.wikidata.org/entity/Q19692","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2006-11-21T18:06:36Z","dateModified":"2018-07-31T16:34:45Z","headline":"jier"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":119,"wgHostname":"mw1252"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε