Skip to main content

Oarehelte Boarnen, noaten en referinsjes NavigaasjemenuReferences, op dizze sideSpouses

Multi tool use
Multi tool use

FamyljerelaasjeLeafdeSeksualiteitHoulikMinsk en maatskippijMaatskippijPersoan nei juridyske status


geslachtsneutralehoulikrelaasjeleafderegistrearre partnerskipgearwenningskontraktoer de putheak troudmanlikegeslachtfroulikhollanistyskeynterferinsjesNederlânsketroudtroud pearReferences, op dizze side












Oarehelte




Ut Wikipedy






Jump to navigation
Jump to search




It stânbyld fan kollumnist Simon Carmiggelt en syn frou Tiny.


In oarehelte of houlikspartner is in geslachtsneutrale oantsjutting foar immen mei wa't men it libben dielt en in houlik of in oarsoartige duorjende en ornaris eksklusive relaasje op it mêd fan leafde ûnderhâldt (lykas in registrearre partnerskip, in relaasje op basis fan in gearwenningskontrakt of as men oer de putheak troud is).


In oarehelte fan it manlike geslacht wurdt oantsjut as man (yn 'e sin fan "myn man"), en in oarehelte fan it froulik geslacht wurdt in frou neamd (yn 'e sin fan "myn frou"), of ek wol wiif. Men hat it tsjintwurdich ek wol oer echtgenoat of echtgenoate, mar dat binne hollanistyske ynterferinsjes op basis fan it Nederlânske echtgenoot en echtgenote. Tegearre foarmje de beide oarehelten in pear of stel, of, as se troud binne, in troud pear of man-en-wiif.




Boarnen, noaten en referinsjes




Boarnen, noaten en/as referinsjes:

Foar boarnen en oare literatuer, sjoch ûnder: References, op dizze side.



Commons



Besibskip

earstegraads besibskip

âlden (heit • mem) | bern (soan • dochter) | sibling (broer • suster)

twaddegraads besibskip

pake en beppe (pake • beppe) | pake- en beppesizzer | omke | muoike | omke- en muoikesizzer | healsibling (healbroer • healsuster)

treddegraads besibskip

oerpake en -beppe (oerpake • oerbeppe) | oerpake- en -beppesizzer | âldomke | âldmuoike | âldomke- en -muoikesizzer | neef | nicht | healomke | healmuoike

fjirdegraads besibskip

betoerpake en -beppe (betoerpake • betoerbeppe) | betoerpake- en -beppesizzer | oerâldomke | oerâldmuoike | oerâldomke- en -muoikesizzer | efterneef | efternicht

skoanfamylje (gjin biologyske besibskip)

oarehelte (man • frou) | skoanâlden (skoanheit • skoanmem) | sweager | skoansuster | skoanbern (skoansoan • skoandochter) | oantroude omke | oantroude muoike

styffamylje (gjin biologyske besibskip)

styfâlder (styfheit • styfmem) | styfbern (styfsoan • styfdochter) | styfsibling (styfbroer • styfsuster) | styfpake | styfbeppe | styfpakesizzer | styfbeppesizzer | styfomke | styfmuoike | styfomkesizzer | styfmuoikesizzer
oar

adopsje | allinnichsteande âlder | bloedsibskip | famylje | foarâlden | foarbern (foarsoan • foardochter) | generaasje | gesin | húshâlding | ienlingsbern | neiteam | oansibskip | oerwûn bern | ôfstamming | pleechgesin | probandus | list fan beneamings foar generaasjes



Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Oarehelte&oldid=814140"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.060","walltime":"0.071","ppvisitednodes":"value":30,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":5279,"limit":2097152,"templateargumentsize":"value":773,"limit":2097152,"expansiondepth":"value":4,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 11.594 1 -total"," 67.67% 7.846 1 Berjocht:Boarnen"," 34.08% 3.951 1 Berjocht:Commonscat"," 31.32% 3.631 1 Berjocht:Besibskip"],"cachereport":"origin":"mw1296","timestamp":"20190323151737","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Oarehelte","url":"https://fy.wikipedia.org/wiki/Oarehelte","sameAs":"http://www.wikidata.org/entity/Q1196129","mainEntity":"http://www.wikidata.org/entity/Q1196129","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2016-11-29T21:53:09Z","dateModified":"2016-11-29T21:53:09Z","image":"https://upload.wikimedia.org/wikipedia/commons/1/1d/Beeld_van_Simon_Carmiggelt_en_echtgenote_Tiny_-_Wim_Kuijl_%28De_Steeg%294.jpg"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":114,"wgHostname":"mw1325"););oSKbtR TX2EwpvilGhaTJh5LwLzPdKn7,pmdXFxrr zbXO2qyaE2gci4qXVhCJBfr GGzrVYK,siLrfq oERA2KuHl
FJz2pZIoYRJpBRqP Y07ugaPuUgnDQVAn

Popular posts from this blog

What is the surface area of the 3-dimensional elliptope? The 2019 Stack Overflow Developer Survey Results Are InWhat is the volume of the $3$-dimensional elliptope?Compute the surface area of an oblate paraboloidFinding the sphere surface area using the divergence theorem and sphere volumeVolume vs. Surface Area IntegralsCalculate surface area of a F using the surface integralChange of Variable vs ParametrizationLine integrals - Surface areaDefinite Integral $ 4piint_0^1cosh(t)sqrtcosh^2(t)+sinh^2(t) dt $What is the volume of the $3$-dimensional elliptope?surface area using formula and double integralsSurface area of ellipsoid created by rotation of parametric curve

253 دساں سائینسی کھوجاں موتاں کھوج پتر

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?