Why are we not using Dirac delta and ignoring the contribution to the surface integral from the point $r=0$? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Calculate surface integral of point charge located outside the surfaceHow do I convert a vector field in Cartesian coordinates to spherical coordinates?Directional derivative conceptual questionPotential theory solution for Variable coefficient Poisson with Dirichlet Boundary conditionsDivergence change of variables (to polar)What is wrong with this line integral? (Line integral change of variables)How can I find the curl of velocity in spherical coordinates?A question about gradient fieldIf $vecnabla cdot vecV neq 0$ at only one point, will this prevent us from saying that $vecV=vecnabla times vecU$?Showing volume and surface integration is unaffected by the singularity at $mathbfr'=mathbfr$

What force causes entropy to increase?

Typeface like Times New Roman but with "tied" percent sign

How to stretch delimiters to envolve matrices inside of a kbordermatrix?

Take groceries in checked luggage

Wall plug outlet change

Is every episode of "Where are my Pants?" identical?

Why is superheterodyning better than direct conversion?

Is this wall load bearing? Blueprints and photos attached

What do you call a plan that's an alternative plan in case your initial plan fails?

Did God make two great lights or did He make the great light two?

Semisimplicity of the category of coherent sheaves?

Match Roman Numerals

ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?

I could not break this equation. Please help me

What was the last x86 CPU that did not have the x87 floating-point unit built in?

University's motivation for having tenure-track positions

does high air pressure throw off wheel balance?

Make it rain characters

Single author papers against my advisor's will?

Can a 1st-level character have an ability score above 18?

Why does the Event Horizon Telescope (EHT) not include telescopes from Africa, Asia or Australia?

Who or what is the being for whom Being is a question for Heidegger?

Working through the single responsibility principle (SRP) in Python when calls are expensive

Do working physicists consider Newtonian mechanics to be "falsified"?



Why are we not using Dirac delta and ignoring the contribution to the surface integral from the point $r=0$?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Calculate surface integral of point charge located outside the surfaceHow do I convert a vector field in Cartesian coordinates to spherical coordinates?Directional derivative conceptual questionPotential theory solution for Variable coefficient Poisson with Dirichlet Boundary conditionsDivergence change of variables (to polar)What is wrong with this line integral? (Line integral change of variables)How can I find the curl of velocity in spherical coordinates?A question about gradient fieldIf $vecnabla cdot vecV neq 0$ at only one point, will this prevent us from saying that $vecV=vecnabla times vecU$?Showing volume and surface integration is unaffected by the singularity at $mathbfr'=mathbfr$










2












$begingroup$


Let $V'$ be the volume of dipole distribution and $S'$ be the boundary.



The potential of a dipole distribution at a point $P$ is:



$$psi=-k int_V'
dfracvecnabla'.vecM'rdV'
+k oint_S'dfracvecM'.hatnrdS'$$



If $Pin V'$ and $Pin S'$, the integrand is discontinuous (infinite) at the point $r=0$. If we use spherical and polar coordinates, the integrand is continuous everywhere:



beginalign
psi &=bbox[orange,5px]-k int_V' dfracvecnabla'.vecM'r r^2 sin theta dtheta dphi dr\
&bbox[pink,5px]+koint_S'_1 dfracvecM'.hatnr sqrtf_x^2+f_y^2+1 R dR dtheta'
bbox[yellow,5px]+ k oint_S'_2dfracvecM'.hatnrdS'\
&=bbox[orange,5px]-k int_V' vecnabla'.vecM' r sin theta dtheta dphi dr\
&bbox[pink,5px] + k oint_S'_1 vecM'.hatn sqrtf_x^2+f_y^2+1 dfracRsqrtR^2+f^2 dR dtheta'
bbox[yellow,5px] + k oint_S'_2dfracvecM'.hatnrdS'
endalign



enter image description here



The field of a dipole distribution at a point $P$ is:



$$nablapsi=-k int_V'
(vecnabla'.vecM') nabla left( dfrac1r right) dV'
+k oint_S' (vecM'.hatn) nabla left( dfrac1r right) dS'$$



If $Pin V'$ and $Pin S'$, the integrand is discontinuous (infinite) at the point $r=0$. If we use spherical and polar coordinates:



beginalign
nablapsi&=bbox[orange,5px]-k int_V'
(vecnabla'.vecM') left( dfrachatrr^2 right) r^2 sin theta dtheta dphi dr\
&bbox[pink,5px]+ k oint_S'_1 (vecM'.hatn) left( dfrachatrr right) sqrtf_x^2+f_y^2+1 dfracRsqrtR^2+f^2 dR dtheta'
bbox[yellow,5px] + k oint_S'_2dfracvecM'.hatnrdS'
endalign



The first term has the integrand continuous everywhere. The second term has the integrand discontinuous (infinite) at the point $r=0$.




Question:



Is it necessary to remove a small circle around $R=0$ in order to remove the singularity in the second term so that we can compute the integral? Then how shall we show that the second term of $nabla psi$ is convergent after removing a small circle around $R=0$ and then taking the limit as the radius of the small circle tends to zero?











share|cite|improve this question











$endgroup$











  • $begingroup$
    Crossposted to physics.stackexchange.com/q/470123/2451
    $endgroup$
    – Qmechanic
    Apr 2 at 21:40










  • $begingroup$
    Can anybody answer???
    $endgroup$
    – Joe
    Apr 4 at 7:16











  • $begingroup$
    Please somebody answer....
    $endgroup$
    – Joe
    Apr 9 at 11:43















2












$begingroup$


Let $V'$ be the volume of dipole distribution and $S'$ be the boundary.



The potential of a dipole distribution at a point $P$ is:



$$psi=-k int_V'
dfracvecnabla'.vecM'rdV'
+k oint_S'dfracvecM'.hatnrdS'$$



If $Pin V'$ and $Pin S'$, the integrand is discontinuous (infinite) at the point $r=0$. If we use spherical and polar coordinates, the integrand is continuous everywhere:



beginalign
psi &=bbox[orange,5px]-k int_V' dfracvecnabla'.vecM'r r^2 sin theta dtheta dphi dr\
&bbox[pink,5px]+koint_S'_1 dfracvecM'.hatnr sqrtf_x^2+f_y^2+1 R dR dtheta'
bbox[yellow,5px]+ k oint_S'_2dfracvecM'.hatnrdS'\
&=bbox[orange,5px]-k int_V' vecnabla'.vecM' r sin theta dtheta dphi dr\
&bbox[pink,5px] + k oint_S'_1 vecM'.hatn sqrtf_x^2+f_y^2+1 dfracRsqrtR^2+f^2 dR dtheta'
bbox[yellow,5px] + k oint_S'_2dfracvecM'.hatnrdS'
endalign



enter image description here



The field of a dipole distribution at a point $P$ is:



$$nablapsi=-k int_V'
(vecnabla'.vecM') nabla left( dfrac1r right) dV'
+k oint_S' (vecM'.hatn) nabla left( dfrac1r right) dS'$$



If $Pin V'$ and $Pin S'$, the integrand is discontinuous (infinite) at the point $r=0$. If we use spherical and polar coordinates:



beginalign
nablapsi&=bbox[orange,5px]-k int_V'
(vecnabla'.vecM') left( dfrachatrr^2 right) r^2 sin theta dtheta dphi dr\
&bbox[pink,5px]+ k oint_S'_1 (vecM'.hatn) left( dfrachatrr right) sqrtf_x^2+f_y^2+1 dfracRsqrtR^2+f^2 dR dtheta'
bbox[yellow,5px] + k oint_S'_2dfracvecM'.hatnrdS'
endalign



The first term has the integrand continuous everywhere. The second term has the integrand discontinuous (infinite) at the point $r=0$.




Question:



Is it necessary to remove a small circle around $R=0$ in order to remove the singularity in the second term so that we can compute the integral? Then how shall we show that the second term of $nabla psi$ is convergent after removing a small circle around $R=0$ and then taking the limit as the radius of the small circle tends to zero?











share|cite|improve this question











$endgroup$











  • $begingroup$
    Crossposted to physics.stackexchange.com/q/470123/2451
    $endgroup$
    – Qmechanic
    Apr 2 at 21:40










  • $begingroup$
    Can anybody answer???
    $endgroup$
    – Joe
    Apr 4 at 7:16











  • $begingroup$
    Please somebody answer....
    $endgroup$
    – Joe
    Apr 9 at 11:43













2












2








2





$begingroup$


Let $V'$ be the volume of dipole distribution and $S'$ be the boundary.



The potential of a dipole distribution at a point $P$ is:



$$psi=-k int_V'
dfracvecnabla'.vecM'rdV'
+k oint_S'dfracvecM'.hatnrdS'$$



If $Pin V'$ and $Pin S'$, the integrand is discontinuous (infinite) at the point $r=0$. If we use spherical and polar coordinates, the integrand is continuous everywhere:



beginalign
psi &=bbox[orange,5px]-k int_V' dfracvecnabla'.vecM'r r^2 sin theta dtheta dphi dr\
&bbox[pink,5px]+koint_S'_1 dfracvecM'.hatnr sqrtf_x^2+f_y^2+1 R dR dtheta'
bbox[yellow,5px]+ k oint_S'_2dfracvecM'.hatnrdS'\
&=bbox[orange,5px]-k int_V' vecnabla'.vecM' r sin theta dtheta dphi dr\
&bbox[pink,5px] + k oint_S'_1 vecM'.hatn sqrtf_x^2+f_y^2+1 dfracRsqrtR^2+f^2 dR dtheta'
bbox[yellow,5px] + k oint_S'_2dfracvecM'.hatnrdS'
endalign



enter image description here



The field of a dipole distribution at a point $P$ is:



$$nablapsi=-k int_V'
(vecnabla'.vecM') nabla left( dfrac1r right) dV'
+k oint_S' (vecM'.hatn) nabla left( dfrac1r right) dS'$$



If $Pin V'$ and $Pin S'$, the integrand is discontinuous (infinite) at the point $r=0$. If we use spherical and polar coordinates:



beginalign
nablapsi&=bbox[orange,5px]-k int_V'
(vecnabla'.vecM') left( dfrachatrr^2 right) r^2 sin theta dtheta dphi dr\
&bbox[pink,5px]+ k oint_S'_1 (vecM'.hatn) left( dfrachatrr right) sqrtf_x^2+f_y^2+1 dfracRsqrtR^2+f^2 dR dtheta'
bbox[yellow,5px] + k oint_S'_2dfracvecM'.hatnrdS'
endalign



The first term has the integrand continuous everywhere. The second term has the integrand discontinuous (infinite) at the point $r=0$.




Question:



Is it necessary to remove a small circle around $R=0$ in order to remove the singularity in the second term so that we can compute the integral? Then how shall we show that the second term of $nabla psi$ is convergent after removing a small circle around $R=0$ and then taking the limit as the radius of the small circle tends to zero?











share|cite|improve this question











$endgroup$




Let $V'$ be the volume of dipole distribution and $S'$ be the boundary.



The potential of a dipole distribution at a point $P$ is:



$$psi=-k int_V'
dfracvecnabla'.vecM'rdV'
+k oint_S'dfracvecM'.hatnrdS'$$



If $Pin V'$ and $Pin S'$, the integrand is discontinuous (infinite) at the point $r=0$. If we use spherical and polar coordinates, the integrand is continuous everywhere:



beginalign
psi &=bbox[orange,5px]-k int_V' dfracvecnabla'.vecM'r r^2 sin theta dtheta dphi dr\
&bbox[pink,5px]+koint_S'_1 dfracvecM'.hatnr sqrtf_x^2+f_y^2+1 R dR dtheta'
bbox[yellow,5px]+ k oint_S'_2dfracvecM'.hatnrdS'\
&=bbox[orange,5px]-k int_V' vecnabla'.vecM' r sin theta dtheta dphi dr\
&bbox[pink,5px] + k oint_S'_1 vecM'.hatn sqrtf_x^2+f_y^2+1 dfracRsqrtR^2+f^2 dR dtheta'
bbox[yellow,5px] + k oint_S'_2dfracvecM'.hatnrdS'
endalign



enter image description here



The field of a dipole distribution at a point $P$ is:



$$nablapsi=-k int_V'
(vecnabla'.vecM') nabla left( dfrac1r right) dV'
+k oint_S' (vecM'.hatn) nabla left( dfrac1r right) dS'$$



If $Pin V'$ and $Pin S'$, the integrand is discontinuous (infinite) at the point $r=0$. If we use spherical and polar coordinates:



beginalign
nablapsi&=bbox[orange,5px]-k int_V'
(vecnabla'.vecM') left( dfrachatrr^2 right) r^2 sin theta dtheta dphi dr\
&bbox[pink,5px]+ k oint_S'_1 (vecM'.hatn) left( dfrachatrr right) sqrtf_x^2+f_y^2+1 dfracRsqrtR^2+f^2 dR dtheta'
bbox[yellow,5px] + k oint_S'_2dfracvecM'.hatnrdS'
endalign



The first term has the integrand continuous everywhere. The second term has the integrand discontinuous (infinite) at the point $r=0$.




Question:



Is it necessary to remove a small circle around $R=0$ in order to remove the singularity in the second term so that we can compute the integral? Then how shall we show that the second term of $nabla psi$ is convergent after removing a small circle around $R=0$ and then taking the limit as the radius of the small circle tends to zero?








multivariable-calculus polar-coordinates spherical-coordinates singularity potential-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 8 at 16:26







Joe

















asked Mar 31 at 14:31









JoeJoe

245214




245214











  • $begingroup$
    Crossposted to physics.stackexchange.com/q/470123/2451
    $endgroup$
    – Qmechanic
    Apr 2 at 21:40










  • $begingroup$
    Can anybody answer???
    $endgroup$
    – Joe
    Apr 4 at 7:16











  • $begingroup$
    Please somebody answer....
    $endgroup$
    – Joe
    Apr 9 at 11:43
















  • $begingroup$
    Crossposted to physics.stackexchange.com/q/470123/2451
    $endgroup$
    – Qmechanic
    Apr 2 at 21:40










  • $begingroup$
    Can anybody answer???
    $endgroup$
    – Joe
    Apr 4 at 7:16











  • $begingroup$
    Please somebody answer....
    $endgroup$
    – Joe
    Apr 9 at 11:43















$begingroup$
Crossposted to physics.stackexchange.com/q/470123/2451
$endgroup$
– Qmechanic
Apr 2 at 21:40




$begingroup$
Crossposted to physics.stackexchange.com/q/470123/2451
$endgroup$
– Qmechanic
Apr 2 at 21:40












$begingroup$
Can anybody answer???
$endgroup$
– Joe
Apr 4 at 7:16





$begingroup$
Can anybody answer???
$endgroup$
– Joe
Apr 4 at 7:16













$begingroup$
Please somebody answer....
$endgroup$
– Joe
Apr 9 at 11:43




$begingroup$
Please somebody answer....
$endgroup$
– Joe
Apr 9 at 11:43










0






active

oldest

votes












Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169448%2fwhy-are-we-not-using-dirac-delta-and-ignoring-the-contribution-to-the-surface-in%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3169448%2fwhy-are-we-not-using-dirac-delta-and-ignoring-the-contribution-to-the-surface-in%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε