show that $frac1k^a-1 - frac1(k+1)^a-1 geq frac1zeta(a).k^ac $ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How can Radon-Nikodym and Borel-Cantelli be used to calculate Probability distribution?Entropy of Zipf and Zeta DistributionsAn upper bound for $-fraczeta'zeta(s)-frac1s-1$Convergence of Sum of Random variable to another - Cantor functionProve that $sum_h=1^k zeta(s, frachk) = k^s zeta(s,1), , k=1,2,ldots$Using the acceptance-rejection method for simulatingSimulate a discrete random variableConvergence of expectation of hitting time of a symmetric random walkGeneralizing $sumlimits_mgeq1sumlimits_ngeq1frac(-1)^nn^3sin(n/m^2k)=frac112zeta(6k)-fracpi^212zeta(2k)$Show that the conditionnal distribution of Y1| $cq(Y1)U1 leq p(Y1)$ is given by the mass function p on $mathbb N$

Which types of prepositional phrase is "toward its employees" in Philosophy guiding the organization's policies towards its employees is not bad?

How do I say "this must not happen"?

How to achieve cat-like agility?

Is there night in Alpha Complex?

What is "Lambda" in Heston's original paper on stochastic volatility models?

Was the pager message from Nick Fury to Captain Marvel unnecessary?

Marquee sign letters

How to make an animal which can only breed for a certain number of generations?

Vertical ranges of Column Plots in 12

Understanding piped commands in GNU/Linux

Is the Mordenkainen's Sword spell underpowered?

"Destructive power" carried by a B-52?

NIntegrate on a solution of a matrix ODE

Random body shuffle every night—can we still function?

Are there any irrational/transcendental numbers for which the distribution of decimal digits is not uniform?

Where and when has Thucydides been studied?

By what mechanism was the 2017 UK General Election called?

How to resize main filesystem

Twin's vs. Twins'

How could a hydrazine and N2O4 cloud (or it's reactants) show up in weather radar?

Keep at all times, the minus sign above aligned with minus sign below

calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle

The Nth Gryphon Number

First paper to introduce the "principal-agent problem"



show that $frac1k^a-1 - frac1(k+1)^a-1 geq frac1zeta(a).k^ac $



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How can Radon-Nikodym and Borel-Cantelli be used to calculate Probability distribution?Entropy of Zipf and Zeta DistributionsAn upper bound for $-fraczeta'zeta(s)-frac1s-1$Convergence of Sum of Random variable to another - Cantor functionProve that $sum_h=1^k zeta(s, frachk) = k^s zeta(s,1), , k=1,2,ldots$Using the acceptance-rejection method for simulatingSimulate a discrete random variableConvergence of expectation of hitting time of a symmetric random walkGeneralizing $sumlimits_mgeq1sumlimits_ngeq1frac(-1)^nn^3sin(n/m^2k)=frac112zeta(6k)-fracpi^212zeta(2k)$Show that the conditionnal distribution of Y1| $cq(Y1)U1 leq p(Y1)$ is given by the mass function p on $mathbb N$










1












$begingroup$


I want to Apply the acceptance reject method to the zipf distribution.
For that i want to use q(k)= $frac1k^a-1 - frac1(k+1)^a-1$



I have to show there exist c>1, such that $frac1k^a-1 - frac1(k+1)^a-1 geq frac1zeta(a).k^ac $



where $zeta(a)= sum_ngeq1 frac1n^a$ , a>1










share|cite|improve this question











$endgroup$











  • $begingroup$
    Use the Taylor expansion of $(1+x)^1-a$ with $x=1/(k+1)$ equivalently $frac1k^a-1 - frac1(k+1)^a-1 = int_k^k+1 (a-1)t^-adt =(a-1)k^-a+(a-1) aint_k^k+1 int_k^t (k^-a-1-u^-a-1)dudt$
    $endgroup$
    – reuns
    Apr 2 at 20:46
















1












$begingroup$


I want to Apply the acceptance reject method to the zipf distribution.
For that i want to use q(k)= $frac1k^a-1 - frac1(k+1)^a-1$



I have to show there exist c>1, such that $frac1k^a-1 - frac1(k+1)^a-1 geq frac1zeta(a).k^ac $



where $zeta(a)= sum_ngeq1 frac1n^a$ , a>1










share|cite|improve this question











$endgroup$











  • $begingroup$
    Use the Taylor expansion of $(1+x)^1-a$ with $x=1/(k+1)$ equivalently $frac1k^a-1 - frac1(k+1)^a-1 = int_k^k+1 (a-1)t^-adt =(a-1)k^-a+(a-1) aint_k^k+1 int_k^t (k^-a-1-u^-a-1)dudt$
    $endgroup$
    – reuns
    Apr 2 at 20:46














1












1








1


1



$begingroup$


I want to Apply the acceptance reject method to the zipf distribution.
For that i want to use q(k)= $frac1k^a-1 - frac1(k+1)^a-1$



I have to show there exist c>1, such that $frac1k^a-1 - frac1(k+1)^a-1 geq frac1zeta(a).k^ac $



where $zeta(a)= sum_ngeq1 frac1n^a$ , a>1










share|cite|improve this question











$endgroup$




I want to Apply the acceptance reject method to the zipf distribution.
For that i want to use q(k)= $frac1k^a-1 - frac1(k+1)^a-1$



I have to show there exist c>1, such that $frac1k^a-1 - frac1(k+1)^a-1 geq frac1zeta(a).k^ac $



where $zeta(a)= sum_ngeq1 frac1n^a$ , a>1







real-analysis probability probability-theory probability-distributions simulation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 2 at 17:19







Farouk Deutsch

















asked Apr 2 at 16:22









Farouk DeutschFarouk Deutsch

1239




1239











  • $begingroup$
    Use the Taylor expansion of $(1+x)^1-a$ with $x=1/(k+1)$ equivalently $frac1k^a-1 - frac1(k+1)^a-1 = int_k^k+1 (a-1)t^-adt =(a-1)k^-a+(a-1) aint_k^k+1 int_k^t (k^-a-1-u^-a-1)dudt$
    $endgroup$
    – reuns
    Apr 2 at 20:46

















  • $begingroup$
    Use the Taylor expansion of $(1+x)^1-a$ with $x=1/(k+1)$ equivalently $frac1k^a-1 - frac1(k+1)^a-1 = int_k^k+1 (a-1)t^-adt =(a-1)k^-a+(a-1) aint_k^k+1 int_k^t (k^-a-1-u^-a-1)dudt$
    $endgroup$
    – reuns
    Apr 2 at 20:46
















$begingroup$
Use the Taylor expansion of $(1+x)^1-a$ with $x=1/(k+1)$ equivalently $frac1k^a-1 - frac1(k+1)^a-1 = int_k^k+1 (a-1)t^-adt =(a-1)k^-a+(a-1) aint_k^k+1 int_k^t (k^-a-1-u^-a-1)dudt$
$endgroup$
– reuns
Apr 2 at 20:46





$begingroup$
Use the Taylor expansion of $(1+x)^1-a$ with $x=1/(k+1)$ equivalently $frac1k^a-1 - frac1(k+1)^a-1 = int_k^k+1 (a-1)t^-adt =(a-1)k^-a+(a-1) aint_k^k+1 int_k^t (k^-a-1-u^-a-1)dudt$
$endgroup$
– reuns
Apr 2 at 20:46











0






active

oldest

votes












Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172061%2fshow-that-frac1ka-1-frac1k1a-1-geq-frac1-zetaa-ka%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172061%2fshow-that-frac1ka-1-frac1k1a-1-geq-frac1-zetaa-ka%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε