Evaluate the limit: $limlimits_ntoinftyfraclog_a n!n^b, ninBbb N$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How can I prove that $log^k(n) = O(n^epsilon)$?Show that $p_n^1-epsilonle n$ using PNTLimit. $lim_n to inftyfrac1^p+2^p+ldots+n^pn^p+1$.Lim of $(n-1)!^1/n$ as $nrightarrow infty$Evaluate $limlimits_n toinfty left(fracn-1 2n+2right)^n$Limit $mathop lim limits_n to infty fracnleft( a_1…a_n right)^frac1na_1 + … + a_n$Evaluate limit $lim_n to infty 1 over n^k + 1left( k! + (k + 1)! over 1! + cdots + (k + n)! over n! right),k in mathbbN$Evaluate a limit involving powers of $2$Find $limlimits_n to infty fracx_nn$ when $limlimits_n to infty x_n+k-x_n$ existsCan't find a seemingly simple limit $lim_ntoinftyfrac(n+k)!n^n$Evaluate the limit $lim_ntoinftylog_aleft(frac4^nn!n^nright)$Evaluate the limit: $limlimits_ntoinfty frac4^nn!(3n)^n$
Keep at all times, the minus sign above aligned with minus sign below
Problem with display of presentation
Why complex landing gears are used instead of simple, reliable and light weight muscle wire or shape memory alloys?
Did John Wesley plagiarize Matthew Henry...?
Shimano 105 brifters (5800) and Avid BB5 compatibility
Random body shuffle every night—can we still function?
Twin's vs. Twins'
Does the universe have a fixed centre of mass?
Is the Mordenkainen's Sword spell underpowered?
Searching extreme points of polyhedron
Do i imagine the linear (straight line) homotopy in a correct way?
Did pre-Columbian Americans know the spherical shape of the Earth?
Statistical analysis applied to methods coming out of Machine Learning
Where and when has Thucydides been studied?
draw a pulley system
Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?
Why is there so little support for joining EFTA in the British parliament?
Weaponising the Grasp-at-a-Distance spell
Table formatting with tabularx?
Why are current probes so expensive?
Vertical ranges of Column Plots in 12
How to ask rejected full-time candidates to apply to teach individual courses?
An isoperimetric-type inequality inside a cube
My mentor says to set image to Fine instead of RAW — how is this different from JPG?
Evaluate the limit: $limlimits_ntoinftyfraclog_a n!n^b, ninBbb N$
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How can I prove that $log^k(n) = O(n^epsilon)$?Show that $p_n^1-epsilonle n$ using PNTLimit. $lim_n to inftyfrac1^p+2^p+ldots+n^pn^p+1$.Lim of $(n-1)!^1/n$ as $nrightarrow infty$Evaluate $limlimits_n toinfty left(fracn-1 2n+2right)^n$Limit $mathop lim limits_n to infty fracnleft( a_1…a_n right)^frac1na_1 + … + a_n$Evaluate limit $lim_n to infty 1 over n^k + 1left( k! + (k + 1)! over 1! + cdots + (k + n)! over n! right),k in mathbbN$Evaluate a limit involving powers of $2$Find $limlimits_n to infty fracx_nn$ when $limlimits_n to infty x_n+k-x_n$ existsCan't find a seemingly simple limit $lim_ntoinftyfrac(n+k)!n^n$Evaluate the limit $lim_ntoinftylog_aleft(frac4^nn!n^nright)$Evaluate the limit: $limlimits_ntoinfty frac4^nn!(3n)^n$
$begingroup$
Evaluate the limit:
$$
lim_ntoinftyfraclog_a n!n^b, ninBbb N
$$
I've tried to consider two cases: $b < 0$, $b ge 0$. First $b < 0$. This case is simple since the limit becomes:
$$
lim_ntoinftyfraclog_a n!n^b = lim_ntoinftyn^blog_a n! = +infty
$$
Now consider the case when $b ge 0$, then we may apply Cesaro-Stolz theorem, then the limit is equal to the following limit:
$$
beginalign
lim_ntoinfty fraclog_a n!n^b &= lim_ntoinfty fraclog_a (n+1)! - log_an!(n+1)^b - n^b \
&= lim_ntoinfty fraclog_a(n+1)(n+1)^b - n^b
endalign
$$
I've shown earlier that:
$$
lim_ntoinftyleft((n+1)^b - n^bright) = 0, textif bin(0, 1)\
lim_ntoinftyleft((n+1)^b - n^bright) = +infty, textif b > 1\
$$
For $b = 1$ the limit becomes:
$$
lim_ntoinftylog_an!over n = lim_ntoinftylog_asqrt[n]n! = +infty
$$
So it looks like:
$$
b le 1 implies lim_ntoinftyfraclog_a n!n^b = +infty
$$
Here I'm not sure how to handle the case for $b > 1$. What are the steps to handle the case for $b > 1$? I know the limit is $0$, but want to justify that.
real-analysis sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Evaluate the limit:
$$
lim_ntoinftyfraclog_a n!n^b, ninBbb N
$$
I've tried to consider two cases: $b < 0$, $b ge 0$. First $b < 0$. This case is simple since the limit becomes:
$$
lim_ntoinftyfraclog_a n!n^b = lim_ntoinftyn^blog_a n! = +infty
$$
Now consider the case when $b ge 0$, then we may apply Cesaro-Stolz theorem, then the limit is equal to the following limit:
$$
beginalign
lim_ntoinfty fraclog_a n!n^b &= lim_ntoinfty fraclog_a (n+1)! - log_an!(n+1)^b - n^b \
&= lim_ntoinfty fraclog_a(n+1)(n+1)^b - n^b
endalign
$$
I've shown earlier that:
$$
lim_ntoinftyleft((n+1)^b - n^bright) = 0, textif bin(0, 1)\
lim_ntoinftyleft((n+1)^b - n^bright) = +infty, textif b > 1\
$$
For $b = 1$ the limit becomes:
$$
lim_ntoinftylog_an!over n = lim_ntoinftylog_asqrt[n]n! = +infty
$$
So it looks like:
$$
b le 1 implies lim_ntoinftyfraclog_a n!n^b = +infty
$$
Here I'm not sure how to handle the case for $b > 1$. What are the steps to handle the case for $b > 1$? I know the limit is $0$, but want to justify that.
real-analysis sequences-and-series limits
$endgroup$
1
$begingroup$
$log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
$endgroup$
– GEdgar
Apr 2 at 16:30
$begingroup$
If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
$endgroup$
– roman
Apr 8 at 17:46
add a comment |
$begingroup$
Evaluate the limit:
$$
lim_ntoinftyfraclog_a n!n^b, ninBbb N
$$
I've tried to consider two cases: $b < 0$, $b ge 0$. First $b < 0$. This case is simple since the limit becomes:
$$
lim_ntoinftyfraclog_a n!n^b = lim_ntoinftyn^blog_a n! = +infty
$$
Now consider the case when $b ge 0$, then we may apply Cesaro-Stolz theorem, then the limit is equal to the following limit:
$$
beginalign
lim_ntoinfty fraclog_a n!n^b &= lim_ntoinfty fraclog_a (n+1)! - log_an!(n+1)^b - n^b \
&= lim_ntoinfty fraclog_a(n+1)(n+1)^b - n^b
endalign
$$
I've shown earlier that:
$$
lim_ntoinftyleft((n+1)^b - n^bright) = 0, textif bin(0, 1)\
lim_ntoinftyleft((n+1)^b - n^bright) = +infty, textif b > 1\
$$
For $b = 1$ the limit becomes:
$$
lim_ntoinftylog_an!over n = lim_ntoinftylog_asqrt[n]n! = +infty
$$
So it looks like:
$$
b le 1 implies lim_ntoinftyfraclog_a n!n^b = +infty
$$
Here I'm not sure how to handle the case for $b > 1$. What are the steps to handle the case for $b > 1$? I know the limit is $0$, but want to justify that.
real-analysis sequences-and-series limits
$endgroup$
Evaluate the limit:
$$
lim_ntoinftyfraclog_a n!n^b, ninBbb N
$$
I've tried to consider two cases: $b < 0$, $b ge 0$. First $b < 0$. This case is simple since the limit becomes:
$$
lim_ntoinftyfraclog_a n!n^b = lim_ntoinftyn^blog_a n! = +infty
$$
Now consider the case when $b ge 0$, then we may apply Cesaro-Stolz theorem, then the limit is equal to the following limit:
$$
beginalign
lim_ntoinfty fraclog_a n!n^b &= lim_ntoinfty fraclog_a (n+1)! - log_an!(n+1)^b - n^b \
&= lim_ntoinfty fraclog_a(n+1)(n+1)^b - n^b
endalign
$$
I've shown earlier that:
$$
lim_ntoinftyleft((n+1)^b - n^bright) = 0, textif bin(0, 1)\
lim_ntoinftyleft((n+1)^b - n^bright) = +infty, textif b > 1\
$$
For $b = 1$ the limit becomes:
$$
lim_ntoinftylog_an!over n = lim_ntoinftylog_asqrt[n]n! = +infty
$$
So it looks like:
$$
b le 1 implies lim_ntoinftyfraclog_a n!n^b = +infty
$$
Here I'm not sure how to handle the case for $b > 1$. What are the steps to handle the case for $b > 1$? I know the limit is $0$, but want to justify that.
real-analysis sequences-and-series limits
real-analysis sequences-and-series limits
edited Apr 8 at 18:36
rtybase
11.7k31534
11.7k31534
asked Apr 2 at 16:24
romanroman
2,54721226
2,54721226
1
$begingroup$
$log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
$endgroup$
– GEdgar
Apr 2 at 16:30
$begingroup$
If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
$endgroup$
– roman
Apr 8 at 17:46
add a comment |
1
$begingroup$
$log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
$endgroup$
– GEdgar
Apr 2 at 16:30
$begingroup$
If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
$endgroup$
– roman
Apr 8 at 17:46
1
1
$begingroup$
$log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
$endgroup$
– GEdgar
Apr 2 at 16:30
$begingroup$
$log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
$endgroup$
– GEdgar
Apr 2 at 16:30
$begingroup$
If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
$endgroup$
– roman
Apr 8 at 17:46
$begingroup$
If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
$endgroup$
– roman
Apr 8 at 17:46
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
$$(n+1)^b - n^b=bc^b-1 Rightarrow \
b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$
and from some $n$ onwards, assuming $lna>0$:
$$0<fraclog_a(n+1)b(n+1)^b-1=
fracln(n+1)b(n+1)^b-1lna <
fraclog_a(n+1)(n+1)^b - n^b <
fraclog_a(n+1)bn^b-1=
fracln(n+1)bn^b-1lna$$
because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).
For $lna<0$ we have
$$0>fracln(n+1)b(n+1)^b-1lna>
fraclog_a(n+1)(n+1)^b - n^b >
fracln(n+1)bn^b-1lna$$
we the same result.
$endgroup$
add a comment |
$begingroup$
Hint:
Use Stirling approximation.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172063%2fevaluate-the-limit-lim-limits-n-to-infty-frac-log-a-nnb-n-in-bbb-n%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
$$(n+1)^b - n^b=bc^b-1 Rightarrow \
b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$
and from some $n$ onwards, assuming $lna>0$:
$$0<fraclog_a(n+1)b(n+1)^b-1=
fracln(n+1)b(n+1)^b-1lna <
fraclog_a(n+1)(n+1)^b - n^b <
fraclog_a(n+1)bn^b-1=
fracln(n+1)bn^b-1lna$$
because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).
For $lna<0$ we have
$$0>fracln(n+1)b(n+1)^b-1lna>
fraclog_a(n+1)(n+1)^b - n^b >
fracln(n+1)bn^b-1lna$$
we the same result.
$endgroup$
add a comment |
$begingroup$
For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
$$(n+1)^b - n^b=bc^b-1 Rightarrow \
b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$
and from some $n$ onwards, assuming $lna>0$:
$$0<fraclog_a(n+1)b(n+1)^b-1=
fracln(n+1)b(n+1)^b-1lna <
fraclog_a(n+1)(n+1)^b - n^b <
fraclog_a(n+1)bn^b-1=
fracln(n+1)bn^b-1lna$$
because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).
For $lna<0$ we have
$$0>fracln(n+1)b(n+1)^b-1lna>
fraclog_a(n+1)(n+1)^b - n^b >
fracln(n+1)bn^b-1lna$$
we the same result.
$endgroup$
add a comment |
$begingroup$
For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
$$(n+1)^b - n^b=bc^b-1 Rightarrow \
b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$
and from some $n$ onwards, assuming $lna>0$:
$$0<fraclog_a(n+1)b(n+1)^b-1=
fracln(n+1)b(n+1)^b-1lna <
fraclog_a(n+1)(n+1)^b - n^b <
fraclog_a(n+1)bn^b-1=
fracln(n+1)bn^b-1lna$$
because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).
For $lna<0$ we have
$$0>fracln(n+1)b(n+1)^b-1lna>
fraclog_a(n+1)(n+1)^b - n^b >
fracln(n+1)bn^b-1lna$$
we the same result.
$endgroup$
For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
$$(n+1)^b - n^b=bc^b-1 Rightarrow \
b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$
and from some $n$ onwards, assuming $lna>0$:
$$0<fraclog_a(n+1)b(n+1)^b-1=
fracln(n+1)b(n+1)^b-1lna <
fraclog_a(n+1)(n+1)^b - n^b <
fraclog_a(n+1)bn^b-1=
fracln(n+1)bn^b-1lna$$
because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).
For $lna<0$ we have
$$0>fracln(n+1)b(n+1)^b-1lna>
fraclog_a(n+1)(n+1)^b - n^b >
fracln(n+1)bn^b-1lna$$
we the same result.
edited Apr 2 at 20:21
answered Apr 2 at 20:03
rtybasertybase
11.7k31534
11.7k31534
add a comment |
add a comment |
$begingroup$
Hint:
Use Stirling approximation.
$endgroup$
add a comment |
$begingroup$
Hint:
Use Stirling approximation.
$endgroup$
add a comment |
$begingroup$
Hint:
Use Stirling approximation.
$endgroup$
Hint:
Use Stirling approximation.
answered Apr 2 at 16:30
EurekaEureka
1,061115
1,061115
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172063%2fevaluate-the-limit-lim-limits-n-to-infty-frac-log-a-nnb-n-in-bbb-n%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
$endgroup$
– GEdgar
Apr 2 at 16:30
$begingroup$
If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
$endgroup$
– roman
Apr 8 at 17:46