Evaluate the limit: $limlimits_ntoinftyfraclog_a n!n^b, ninBbb N$ Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How can I prove that $log^k(n) = O(n^epsilon)$?Show that $p_n^1-epsilonle n$ using PNTLimit. $lim_n to inftyfrac1^p+2^p+ldots+n^pn^p+1$.Lim of $(n-1)!^1/n$ as $nrightarrow infty$Evaluate $limlimits_n toinfty left(fracn-1 2n+2right)^n$Limit $mathop lim limits_n to infty fracnleft( a_1…a_n right)^frac1na_1 + … + a_n$Evaluate limit $lim_n to infty 1 over n^k + 1left( k! + (k + 1)! over 1! + cdots + (k + n)! over n! right),k in mathbbN$Evaluate a limit involving powers of $2$Find $limlimits_n to infty fracx_nn$ when $limlimits_n to infty x_n+k-x_n$ existsCan't find a seemingly simple limit $lim_ntoinftyfrac(n+k)!n^n$Evaluate the limit $lim_ntoinftylog_aleft(frac4^nn!n^nright)$Evaluate the limit: $limlimits_ntoinfty frac4^nn!(3n)^n$

Keep at all times, the minus sign above aligned with minus sign below

Problem with display of presentation

Why complex landing gears are used instead of simple, reliable and light weight muscle wire or shape memory alloys?

Did John Wesley plagiarize Matthew Henry...?

Shimano 105 brifters (5800) and Avid BB5 compatibility

Random body shuffle every night—can we still function?

Twin's vs. Twins'

Does the universe have a fixed centre of mass?

Is the Mordenkainen's Sword spell underpowered?

Searching extreme points of polyhedron

Do i imagine the linear (straight line) homotopy in a correct way?

Did pre-Columbian Americans know the spherical shape of the Earth?

Statistical analysis applied to methods coming out of Machine Learning

Where and when has Thucydides been studied?

draw a pulley system

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

Why is there so little support for joining EFTA in the British parliament?

Weaponising the Grasp-at-a-Distance spell

Table formatting with tabularx?

Why are current probes so expensive?

Vertical ranges of Column Plots in 12

How to ask rejected full-time candidates to apply to teach individual courses?

An isoperimetric-type inequality inside a cube

My mentor says to set image to Fine instead of RAW — how is this different from JPG?



Evaluate the limit: $limlimits_ntoinftyfraclog_a n!n^b, ninBbb N$



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How can I prove that $log^k(n) = O(n^epsilon)$?Show that $p_n^1-epsilonle n$ using PNTLimit. $lim_n to inftyfrac1^p+2^p+ldots+n^pn^p+1$.Lim of $(n-1)!^1/n$ as $nrightarrow infty$Evaluate $limlimits_n toinfty left(fracn-1 2n+2right)^n$Limit $mathop lim limits_n to infty fracnleft( a_1…a_n right)^frac1na_1 + … + a_n$Evaluate limit $lim_n to infty 1 over n^k + 1left( k! + (k + 1)! over 1! + cdots + (k + n)! over n! right),k in mathbbN$Evaluate a limit involving powers of $2$Find $limlimits_n to infty fracx_nn$ when $limlimits_n to infty x_n+k-x_n$ existsCan't find a seemingly simple limit $lim_ntoinftyfrac(n+k)!n^n$Evaluate the limit $lim_ntoinftylog_aleft(frac4^nn!n^nright)$Evaluate the limit: $limlimits_ntoinfty frac4^nn!(3n)^n$










1












$begingroup$



Evaluate the limit:
$$
lim_ntoinftyfraclog_a n!n^b, ninBbb N
$$




I've tried to consider two cases: $b < 0$, $b ge 0$. First $b < 0$. This case is simple since the limit becomes:
$$
lim_ntoinftyfraclog_a n!n^b = lim_ntoinftyn^blog_a n! = +infty
$$



Now consider the case when $b ge 0$, then we may apply Cesaro-Stolz theorem, then the limit is equal to the following limit:
$$
beginalign
lim_ntoinfty fraclog_a n!n^b &= lim_ntoinfty fraclog_a (n+1)! - log_an!(n+1)^b - n^b \
&= lim_ntoinfty fraclog_a(n+1)(n+1)^b - n^b
endalign
$$



I've shown earlier that:
$$
lim_ntoinftyleft((n+1)^b - n^bright) = 0, textif bin(0, 1)\
lim_ntoinftyleft((n+1)^b - n^bright) = +infty, textif b > 1\
$$



For $b = 1$ the limit becomes:
$$
lim_ntoinftylog_an!over n = lim_ntoinftylog_asqrt[n]n! = +infty
$$



So it looks like:
$$
b le 1 implies lim_ntoinftyfraclog_a n!n^b = +infty
$$



Here I'm not sure how to handle the case for $b > 1$. What are the steps to handle the case for $b > 1$? I know the limit is $0$, but want to justify that.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    $log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
    $endgroup$
    – GEdgar
    Apr 2 at 16:30










  • $begingroup$
    If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
    $endgroup$
    – roman
    Apr 8 at 17:46
















1












$begingroup$



Evaluate the limit:
$$
lim_ntoinftyfraclog_a n!n^b, ninBbb N
$$




I've tried to consider two cases: $b < 0$, $b ge 0$. First $b < 0$. This case is simple since the limit becomes:
$$
lim_ntoinftyfraclog_a n!n^b = lim_ntoinftyn^blog_a n! = +infty
$$



Now consider the case when $b ge 0$, then we may apply Cesaro-Stolz theorem, then the limit is equal to the following limit:
$$
beginalign
lim_ntoinfty fraclog_a n!n^b &= lim_ntoinfty fraclog_a (n+1)! - log_an!(n+1)^b - n^b \
&= lim_ntoinfty fraclog_a(n+1)(n+1)^b - n^b
endalign
$$



I've shown earlier that:
$$
lim_ntoinftyleft((n+1)^b - n^bright) = 0, textif bin(0, 1)\
lim_ntoinftyleft((n+1)^b - n^bright) = +infty, textif b > 1\
$$



For $b = 1$ the limit becomes:
$$
lim_ntoinftylog_an!over n = lim_ntoinftylog_asqrt[n]n! = +infty
$$



So it looks like:
$$
b le 1 implies lim_ntoinftyfraclog_a n!n^b = +infty
$$



Here I'm not sure how to handle the case for $b > 1$. What are the steps to handle the case for $b > 1$? I know the limit is $0$, but want to justify that.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    $log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
    $endgroup$
    – GEdgar
    Apr 2 at 16:30










  • $begingroup$
    If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
    $endgroup$
    – roman
    Apr 8 at 17:46














1












1








1





$begingroup$



Evaluate the limit:
$$
lim_ntoinftyfraclog_a n!n^b, ninBbb N
$$




I've tried to consider two cases: $b < 0$, $b ge 0$. First $b < 0$. This case is simple since the limit becomes:
$$
lim_ntoinftyfraclog_a n!n^b = lim_ntoinftyn^blog_a n! = +infty
$$



Now consider the case when $b ge 0$, then we may apply Cesaro-Stolz theorem, then the limit is equal to the following limit:
$$
beginalign
lim_ntoinfty fraclog_a n!n^b &= lim_ntoinfty fraclog_a (n+1)! - log_an!(n+1)^b - n^b \
&= lim_ntoinfty fraclog_a(n+1)(n+1)^b - n^b
endalign
$$



I've shown earlier that:
$$
lim_ntoinftyleft((n+1)^b - n^bright) = 0, textif bin(0, 1)\
lim_ntoinftyleft((n+1)^b - n^bright) = +infty, textif b > 1\
$$



For $b = 1$ the limit becomes:
$$
lim_ntoinftylog_an!over n = lim_ntoinftylog_asqrt[n]n! = +infty
$$



So it looks like:
$$
b le 1 implies lim_ntoinftyfraclog_a n!n^b = +infty
$$



Here I'm not sure how to handle the case for $b > 1$. What are the steps to handle the case for $b > 1$? I know the limit is $0$, but want to justify that.










share|cite|improve this question











$endgroup$





Evaluate the limit:
$$
lim_ntoinftyfraclog_a n!n^b, ninBbb N
$$




I've tried to consider two cases: $b < 0$, $b ge 0$. First $b < 0$. This case is simple since the limit becomes:
$$
lim_ntoinftyfraclog_a n!n^b = lim_ntoinftyn^blog_a n! = +infty
$$



Now consider the case when $b ge 0$, then we may apply Cesaro-Stolz theorem, then the limit is equal to the following limit:
$$
beginalign
lim_ntoinfty fraclog_a n!n^b &= lim_ntoinfty fraclog_a (n+1)! - log_an!(n+1)^b - n^b \
&= lim_ntoinfty fraclog_a(n+1)(n+1)^b - n^b
endalign
$$



I've shown earlier that:
$$
lim_ntoinftyleft((n+1)^b - n^bright) = 0, textif bin(0, 1)\
lim_ntoinftyleft((n+1)^b - n^bright) = +infty, textif b > 1\
$$



For $b = 1$ the limit becomes:
$$
lim_ntoinftylog_an!over n = lim_ntoinftylog_asqrt[n]n! = +infty
$$



So it looks like:
$$
b le 1 implies lim_ntoinftyfraclog_a n!n^b = +infty
$$



Here I'm not sure how to handle the case for $b > 1$. What are the steps to handle the case for $b > 1$? I know the limit is $0$, but want to justify that.







real-analysis sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 8 at 18:36









rtybase

11.7k31534




11.7k31534










asked Apr 2 at 16:24









romanroman

2,54721226




2,54721226







  • 1




    $begingroup$
    $log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
    $endgroup$
    – GEdgar
    Apr 2 at 16:30










  • $begingroup$
    If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
    $endgroup$
    – roman
    Apr 8 at 17:46













  • 1




    $begingroup$
    $log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
    $endgroup$
    – GEdgar
    Apr 2 at 16:30










  • $begingroup$
    If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
    $endgroup$
    – roman
    Apr 8 at 17:46








1




1




$begingroup$
$log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
$endgroup$
– GEdgar
Apr 2 at 16:30




$begingroup$
$log n! sim n log n$, so you get limit $0$ when $b>1$. So far, you have not completed the case $b=1$.
$endgroup$
– GEdgar
Apr 2 at 16:30












$begingroup$
If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
$endgroup$
– roman
Apr 8 at 17:46





$begingroup$
If you vote down, please provide a reason for that, otherwise, it's not clear what's wrong with the question
$endgroup$
– roman
Apr 8 at 17:46











2 Answers
2






active

oldest

votes


















1












$begingroup$

For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
$$(n+1)^b - n^b=bc^b-1 Rightarrow \
b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$

and from some $n$ onwards, assuming $lna>0$:
$$0<fraclog_a(n+1)b(n+1)^b-1=
fracln(n+1)b(n+1)^b-1lna <
fraclog_a(n+1)(n+1)^b - n^b <
fraclog_a(n+1)bn^b-1=
fracln(n+1)bn^b-1lna$$

because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).



For $lna<0$ we have
$$0>fracln(n+1)b(n+1)^b-1lna>
fraclog_a(n+1)(n+1)^b - n^b >
fracln(n+1)bn^b-1lna$$

we the same result.






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$

    Hint:



    Use Stirling approximation.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172063%2fevaluate-the-limit-lim-limits-n-to-infty-frac-log-a-nnb-n-in-bbb-n%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
      $$(n+1)^b - n^b=bc^b-1 Rightarrow \
      b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$

      and from some $n$ onwards, assuming $lna>0$:
      $$0<fraclog_a(n+1)b(n+1)^b-1=
      fracln(n+1)b(n+1)^b-1lna <
      fraclog_a(n+1)(n+1)^b - n^b <
      fraclog_a(n+1)bn^b-1=
      fracln(n+1)bn^b-1lna$$

      because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).



      For $lna<0$ we have
      $$0>fracln(n+1)b(n+1)^b-1lna>
      fraclog_a(n+1)(n+1)^b - n^b >
      fracln(n+1)bn^b-1lna$$

      we the same result.






      share|cite|improve this answer











      $endgroup$

















        1












        $begingroup$

        For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
        $$(n+1)^b - n^b=bc^b-1 Rightarrow \
        b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$

        and from some $n$ onwards, assuming $lna>0$:
        $$0<fraclog_a(n+1)b(n+1)^b-1=
        fracln(n+1)b(n+1)^b-1lna <
        fraclog_a(n+1)(n+1)^b - n^b <
        fraclog_a(n+1)bn^b-1=
        fracln(n+1)bn^b-1lna$$

        because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).



        For $lna<0$ we have
        $$0>fracln(n+1)b(n+1)^b-1lna>
        fraclog_a(n+1)(n+1)^b - n^b >
        fracln(n+1)bn^b-1lna$$

        we the same result.






        share|cite|improve this answer











        $endgroup$















          1












          1








          1





          $begingroup$

          For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
          $$(n+1)^b - n^b=bc^b-1 Rightarrow \
          b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$

          and from some $n$ onwards, assuming $lna>0$:
          $$0<fraclog_a(n+1)b(n+1)^b-1=
          fracln(n+1)b(n+1)^b-1lna <
          fraclog_a(n+1)(n+1)^b - n^b <
          fraclog_a(n+1)bn^b-1=
          fracln(n+1)bn^b-1lna$$

          because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).



          For $lna<0$ we have
          $$0>fracln(n+1)b(n+1)^b-1lna>
          fraclog_a(n+1)(n+1)^b - n^b >
          fracln(n+1)bn^b-1lna$$

          we the same result.






          share|cite|improve this answer











          $endgroup$



          For $b>1$, use MVT for $f(x)=x^b$, i.e. $exists cin(n,n+1)$ and $n>0$ s.t.
          $$(n+1)^b - n^b=bc^b-1 Rightarrow \
          b(n+1)^b-1>(n+1)^b - n^b > bn^b-1$$

          and from some $n$ onwards, assuming $lna>0$:
          $$0<fraclog_a(n+1)b(n+1)^b-1=
          fracln(n+1)b(n+1)^b-1lna <
          fraclog_a(n+1)(n+1)^b - n^b <
          fraclog_a(n+1)bn^b-1=
          fracln(n+1)bn^b-1lna$$

          because $b-1>0$, RHS goes to $0$ and by squeezing, the limit is $0$. There are quite a few proofs for RHS going to $0$, for example here (proposition 2.2) and here (proposition 2).



          For $lna<0$ we have
          $$0>fracln(n+1)b(n+1)^b-1lna>
          fraclog_a(n+1)(n+1)^b - n^b >
          fracln(n+1)bn^b-1lna$$

          we the same result.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Apr 2 at 20:21

























          answered Apr 2 at 20:03









          rtybasertybase

          11.7k31534




          11.7k31534





















              1












              $begingroup$

              Hint:



              Use Stirling approximation.






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                Hint:



                Use Stirling approximation.






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  Hint:



                  Use Stirling approximation.






                  share|cite|improve this answer









                  $endgroup$



                  Hint:



                  Use Stirling approximation.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 2 at 16:30









                  EurekaEureka

                  1,061115




                  1,061115



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172063%2fevaluate-the-limit-lim-limits-n-to-infty-frac-log-a-nnb-n-in-bbb-n%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                      Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε