Exact Confidence Interval for Uniform Parameter The 2019 Stack Overflow Developer Survey Results Are In$100(1-alpha)$% approximate confidence intervalConfidence interval for Poisson distribution coefficientConfidence interval of a uniform distributionConfidence interval of the parameter of $exp$ and normal distribution from MLE?Confidence interval for a density function parameterConfidence interval for parameterConstructing a symmetrical $100(1-a)%$ confidence interval for $theta$.confidence interval with MLE estimatorHow to compute asymptotic confidence interval for linear regression?

Why does the nucleus not repel itself?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past

How did passengers keep warm on sail ships?

Why doesn't shell automatically fix "useless use of cat"?

Pokemon Turn Based battle (Python)

Why was M87 targeted for the Event Horizon Telescope instead of Sagittarius A*?

Did any laptop computers have a built-in 5 1/4 inch floppy drive?

Can a rogue use sneak attack with weapons that have the thrown property even if they are not thrown?

Button changing its text & action. Good or terrible?

Deal with toxic manager when you can't quit

What is this sharp, curved notch on my knife for?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

Is bread bad for ducks?

Ubuntu Server install with full GUI

Are spiders unable to hurt humans, especially very small spiders?

Flight paths in orbit around Ceres?

Will it cause any balance problems to have PCs level up and gain the benefits of a long rest mid-fight?

Mathematics of imaging the black hole

Cooking pasta in a water boiler

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

Can a flute soloist sit?

How do PCB vias affect signal quality?

Why not take a picture of a closer black hole?



Exact Confidence Interval for Uniform Parameter



The 2019 Stack Overflow Developer Survey Results Are In$100(1-alpha)$% approximate confidence intervalConfidence interval for Poisson distribution coefficientConfidence interval of a uniform distributionConfidence interval of the parameter of $exp$ and normal distribution from MLE?Confidence interval for a density function parameterConfidence interval for parameterConstructing a symmetrical $100(1-a)%$ confidence interval for $theta$.confidence interval with MLE estimatorHow to compute asymptotic confidence interval for linear regression?










0












$begingroup$


I am given the following.



$$X_1, X_2,...,X_n sim U(0,theta)$$
and I want to get an exact confidence interval of $theta$ without using normal approximation.



What I know so far is that $Y_n=max(x_1,x_2,...,x_n)$ is the MLE for $theta $ and $fracn+1nY_n$ is the unbiased estimator.



I have been instructed to find the confidence interval based on this estimator and this is what I have tried.



Let $W=fracn+1nY_n/theta$ then



$$Pr[l<W<u]=1-alpha$$
$$Pr[W<l]=alpha/2$$
$$Pr[W<u]=1-alpha/2$$
where $l$ and $u$ represent the lower and the upper bound of the confidence interval.



Now here is what confuses me.



When I solve for the confidence interval I get
$$fracY_n^nsqrt1-alpha/2 <theta<fracY_n^nsqrtalpha/2 $$
and algebraically the $fracn+1n$ became irrelevant.



even though I got $l=fracn+1n^nsqrtalpha/2$ and $u=fracn+1n^nsqrt1-alpha/2$



Trying to clarify my question as much as possible, what I probably want to say is that if the unbiased estimator $fracn+1nY_n$ is superior to just the MLE, $Y_n$, how is it that the confident interval is not centered around that unbiased estimator?



I know that this is a very odd question and I could not find something similar to my argument online, so I would really appreciate your help.










share|cite|improve this question









$endgroup$











  • $begingroup$
    See Wikipedia on Uniform Dist'n, CI for maximum.
    $endgroup$
    – BruceET
    Mar 31 at 6:30










  • $begingroup$
    What is important here is that $Y_n/theta$ is a pivot. And we expect the CI based on this pivot to be 'good' as $Y_n$ is a sufficient statistic (and MLE also). Why is the unbiased estimator superior to the MLE? Unbiasedness is irrelevant here.
    $endgroup$
    – StubbornAtom
    Mar 31 at 6:37










  • $begingroup$
    I am thinking that the MLE will never get close enough to the actual parameter, so that is why it is not useful. Can you tell me why that has nothing to do with the confidence interval? What I want to say here is that, I tried to create a confidence interval using the unbiased estimator, but the result is no different from just using the MLE. That is counter intuitive to me.
    $endgroup$
    – hyg17
    Apr 1 at 18:40















0












$begingroup$


I am given the following.



$$X_1, X_2,...,X_n sim U(0,theta)$$
and I want to get an exact confidence interval of $theta$ without using normal approximation.



What I know so far is that $Y_n=max(x_1,x_2,...,x_n)$ is the MLE for $theta $ and $fracn+1nY_n$ is the unbiased estimator.



I have been instructed to find the confidence interval based on this estimator and this is what I have tried.



Let $W=fracn+1nY_n/theta$ then



$$Pr[l<W<u]=1-alpha$$
$$Pr[W<l]=alpha/2$$
$$Pr[W<u]=1-alpha/2$$
where $l$ and $u$ represent the lower and the upper bound of the confidence interval.



Now here is what confuses me.



When I solve for the confidence interval I get
$$fracY_n^nsqrt1-alpha/2 <theta<fracY_n^nsqrtalpha/2 $$
and algebraically the $fracn+1n$ became irrelevant.



even though I got $l=fracn+1n^nsqrtalpha/2$ and $u=fracn+1n^nsqrt1-alpha/2$



Trying to clarify my question as much as possible, what I probably want to say is that if the unbiased estimator $fracn+1nY_n$ is superior to just the MLE, $Y_n$, how is it that the confident interval is not centered around that unbiased estimator?



I know that this is a very odd question and I could not find something similar to my argument online, so I would really appreciate your help.










share|cite|improve this question









$endgroup$











  • $begingroup$
    See Wikipedia on Uniform Dist'n, CI for maximum.
    $endgroup$
    – BruceET
    Mar 31 at 6:30










  • $begingroup$
    What is important here is that $Y_n/theta$ is a pivot. And we expect the CI based on this pivot to be 'good' as $Y_n$ is a sufficient statistic (and MLE also). Why is the unbiased estimator superior to the MLE? Unbiasedness is irrelevant here.
    $endgroup$
    – StubbornAtom
    Mar 31 at 6:37










  • $begingroup$
    I am thinking that the MLE will never get close enough to the actual parameter, so that is why it is not useful. Can you tell me why that has nothing to do with the confidence interval? What I want to say here is that, I tried to create a confidence interval using the unbiased estimator, but the result is no different from just using the MLE. That is counter intuitive to me.
    $endgroup$
    – hyg17
    Apr 1 at 18:40













0












0








0





$begingroup$


I am given the following.



$$X_1, X_2,...,X_n sim U(0,theta)$$
and I want to get an exact confidence interval of $theta$ without using normal approximation.



What I know so far is that $Y_n=max(x_1,x_2,...,x_n)$ is the MLE for $theta $ and $fracn+1nY_n$ is the unbiased estimator.



I have been instructed to find the confidence interval based on this estimator and this is what I have tried.



Let $W=fracn+1nY_n/theta$ then



$$Pr[l<W<u]=1-alpha$$
$$Pr[W<l]=alpha/2$$
$$Pr[W<u]=1-alpha/2$$
where $l$ and $u$ represent the lower and the upper bound of the confidence interval.



Now here is what confuses me.



When I solve for the confidence interval I get
$$fracY_n^nsqrt1-alpha/2 <theta<fracY_n^nsqrtalpha/2 $$
and algebraically the $fracn+1n$ became irrelevant.



even though I got $l=fracn+1n^nsqrtalpha/2$ and $u=fracn+1n^nsqrt1-alpha/2$



Trying to clarify my question as much as possible, what I probably want to say is that if the unbiased estimator $fracn+1nY_n$ is superior to just the MLE, $Y_n$, how is it that the confident interval is not centered around that unbiased estimator?



I know that this is a very odd question and I could not find something similar to my argument online, so I would really appreciate your help.










share|cite|improve this question









$endgroup$




I am given the following.



$$X_1, X_2,...,X_n sim U(0,theta)$$
and I want to get an exact confidence interval of $theta$ without using normal approximation.



What I know so far is that $Y_n=max(x_1,x_2,...,x_n)$ is the MLE for $theta $ and $fracn+1nY_n$ is the unbiased estimator.



I have been instructed to find the confidence interval based on this estimator and this is what I have tried.



Let $W=fracn+1nY_n/theta$ then



$$Pr[l<W<u]=1-alpha$$
$$Pr[W<l]=alpha/2$$
$$Pr[W<u]=1-alpha/2$$
where $l$ and $u$ represent the lower and the upper bound of the confidence interval.



Now here is what confuses me.



When I solve for the confidence interval I get
$$fracY_n^nsqrt1-alpha/2 <theta<fracY_n^nsqrtalpha/2 $$
and algebraically the $fracn+1n$ became irrelevant.



even though I got $l=fracn+1n^nsqrtalpha/2$ and $u=fracn+1n^nsqrt1-alpha/2$



Trying to clarify my question as much as possible, what I probably want to say is that if the unbiased estimator $fracn+1nY_n$ is superior to just the MLE, $Y_n$, how is it that the confident interval is not centered around that unbiased estimator?



I know that this is a very odd question and I could not find something similar to my argument online, so I would really appreciate your help.







statistics confidence-interval






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 30 at 21:39









hyg17hyg17

2,00422044




2,00422044











  • $begingroup$
    See Wikipedia on Uniform Dist'n, CI for maximum.
    $endgroup$
    – BruceET
    Mar 31 at 6:30










  • $begingroup$
    What is important here is that $Y_n/theta$ is a pivot. And we expect the CI based on this pivot to be 'good' as $Y_n$ is a sufficient statistic (and MLE also). Why is the unbiased estimator superior to the MLE? Unbiasedness is irrelevant here.
    $endgroup$
    – StubbornAtom
    Mar 31 at 6:37










  • $begingroup$
    I am thinking that the MLE will never get close enough to the actual parameter, so that is why it is not useful. Can you tell me why that has nothing to do with the confidence interval? What I want to say here is that, I tried to create a confidence interval using the unbiased estimator, but the result is no different from just using the MLE. That is counter intuitive to me.
    $endgroup$
    – hyg17
    Apr 1 at 18:40
















  • $begingroup$
    See Wikipedia on Uniform Dist'n, CI for maximum.
    $endgroup$
    – BruceET
    Mar 31 at 6:30










  • $begingroup$
    What is important here is that $Y_n/theta$ is a pivot. And we expect the CI based on this pivot to be 'good' as $Y_n$ is a sufficient statistic (and MLE also). Why is the unbiased estimator superior to the MLE? Unbiasedness is irrelevant here.
    $endgroup$
    – StubbornAtom
    Mar 31 at 6:37










  • $begingroup$
    I am thinking that the MLE will never get close enough to the actual parameter, so that is why it is not useful. Can you tell me why that has nothing to do with the confidence interval? What I want to say here is that, I tried to create a confidence interval using the unbiased estimator, but the result is no different from just using the MLE. That is counter intuitive to me.
    $endgroup$
    – hyg17
    Apr 1 at 18:40















$begingroup$
See Wikipedia on Uniform Dist'n, CI for maximum.
$endgroup$
– BruceET
Mar 31 at 6:30




$begingroup$
See Wikipedia on Uniform Dist'n, CI for maximum.
$endgroup$
– BruceET
Mar 31 at 6:30












$begingroup$
What is important here is that $Y_n/theta$ is a pivot. And we expect the CI based on this pivot to be 'good' as $Y_n$ is a sufficient statistic (and MLE also). Why is the unbiased estimator superior to the MLE? Unbiasedness is irrelevant here.
$endgroup$
– StubbornAtom
Mar 31 at 6:37




$begingroup$
What is important here is that $Y_n/theta$ is a pivot. And we expect the CI based on this pivot to be 'good' as $Y_n$ is a sufficient statistic (and MLE also). Why is the unbiased estimator superior to the MLE? Unbiasedness is irrelevant here.
$endgroup$
– StubbornAtom
Mar 31 at 6:37












$begingroup$
I am thinking that the MLE will never get close enough to the actual parameter, so that is why it is not useful. Can you tell me why that has nothing to do with the confidence interval? What I want to say here is that, I tried to create a confidence interval using the unbiased estimator, but the result is no different from just using the MLE. That is counter intuitive to me.
$endgroup$
– hyg17
Apr 1 at 18:40




$begingroup$
I am thinking that the MLE will never get close enough to the actual parameter, so that is why it is not useful. Can you tell me why that has nothing to do with the confidence interval? What I want to say here is that, I tried to create a confidence interval using the unbiased estimator, but the result is no different from just using the MLE. That is counter intuitive to me.
$endgroup$
– hyg17
Apr 1 at 18:40










1 Answer
1






active

oldest

votes


















0












$begingroup$

Be "centered" you assume that $Y_n$ has some symmetric distribution (density), however $Y_n$ is clearly asymmetrically distributed, hence there is no reason why an exact CI will be symmetric (and thus there is no meaning to talk about "centering" it).






share|cite|improve this answer









$endgroup$












  • $begingroup$
    So, what I want to know is this. As a point estimator, $fracn+1nX_(n)$ is unbiased. But when I find the confidence interval using this estimator and make it a pivot by saying $W=fracn+1nX_(n)/ theta$ the $fracn+1n$ is not reflected in the final solution compared to when I simply use $W=fracX_(n)theta$
    $endgroup$
    – hyg17
    Apr 3 at 23:20











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168812%2fexact-confidence-interval-for-uniform-parameter%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Be "centered" you assume that $Y_n$ has some symmetric distribution (density), however $Y_n$ is clearly asymmetrically distributed, hence there is no reason why an exact CI will be symmetric (and thus there is no meaning to talk about "centering" it).






share|cite|improve this answer









$endgroup$












  • $begingroup$
    So, what I want to know is this. As a point estimator, $fracn+1nX_(n)$ is unbiased. But when I find the confidence interval using this estimator and make it a pivot by saying $W=fracn+1nX_(n)/ theta$ the $fracn+1n$ is not reflected in the final solution compared to when I simply use $W=fracX_(n)theta$
    $endgroup$
    – hyg17
    Apr 3 at 23:20















0












$begingroup$

Be "centered" you assume that $Y_n$ has some symmetric distribution (density), however $Y_n$ is clearly asymmetrically distributed, hence there is no reason why an exact CI will be symmetric (and thus there is no meaning to talk about "centering" it).






share|cite|improve this answer









$endgroup$












  • $begingroup$
    So, what I want to know is this. As a point estimator, $fracn+1nX_(n)$ is unbiased. But when I find the confidence interval using this estimator and make it a pivot by saying $W=fracn+1nX_(n)/ theta$ the $fracn+1n$ is not reflected in the final solution compared to when I simply use $W=fracX_(n)theta$
    $endgroup$
    – hyg17
    Apr 3 at 23:20













0












0








0





$begingroup$

Be "centered" you assume that $Y_n$ has some symmetric distribution (density), however $Y_n$ is clearly asymmetrically distributed, hence there is no reason why an exact CI will be symmetric (and thus there is no meaning to talk about "centering" it).






share|cite|improve this answer









$endgroup$



Be "centered" you assume that $Y_n$ has some symmetric distribution (density), however $Y_n$ is clearly asymmetrically distributed, hence there is no reason why an exact CI will be symmetric (and thus there is no meaning to talk about "centering" it).







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 31 at 7:19









V. VancakV. Vancak

11.4k31026




11.4k31026











  • $begingroup$
    So, what I want to know is this. As a point estimator, $fracn+1nX_(n)$ is unbiased. But when I find the confidence interval using this estimator and make it a pivot by saying $W=fracn+1nX_(n)/ theta$ the $fracn+1n$ is not reflected in the final solution compared to when I simply use $W=fracX_(n)theta$
    $endgroup$
    – hyg17
    Apr 3 at 23:20
















  • $begingroup$
    So, what I want to know is this. As a point estimator, $fracn+1nX_(n)$ is unbiased. But when I find the confidence interval using this estimator and make it a pivot by saying $W=fracn+1nX_(n)/ theta$ the $fracn+1n$ is not reflected in the final solution compared to when I simply use $W=fracX_(n)theta$
    $endgroup$
    – hyg17
    Apr 3 at 23:20















$begingroup$
So, what I want to know is this. As a point estimator, $fracn+1nX_(n)$ is unbiased. But when I find the confidence interval using this estimator and make it a pivot by saying $W=fracn+1nX_(n)/ theta$ the $fracn+1n$ is not reflected in the final solution compared to when I simply use $W=fracX_(n)theta$
$endgroup$
– hyg17
Apr 3 at 23:20




$begingroup$
So, what I want to know is this. As a point estimator, $fracn+1nX_(n)$ is unbiased. But when I find the confidence interval using this estimator and make it a pivot by saying $W=fracn+1nX_(n)/ theta$ the $fracn+1n$ is not reflected in the final solution compared to when I simply use $W=fracX_(n)theta$
$endgroup$
– hyg17
Apr 3 at 23:20

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168812%2fexact-confidence-interval-for-uniform-parameter%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε