Skip to main content

Stins Sjoch ek | Boarnen, noaten en referinsjes Navigaasjemenu

StinsBouwurkArsjitektuer yn FryslânSkiednis fan FryslânKultuer yn Fryslân


FryslânstateSkierstins14e-15e iuwadelike19e iuw16e17e iuwEast-FryslânGrinslânGrinslânskboargenIwema-StienhûsNiebertEast-FryslânBunderheeBundeGoogle EarthVirtual EarthGrinslânDollard












Stins




Ut Wikipedy






Jump to navigation
Jump to search




De skierstins ± 1927





Stins Bunderhee


In stins wie foarhinne yn Fryslân in iere foarm fan in hearehús of boarch.


It wurd stins komt fan stienhús. Dêrby moat tocht wurde oan bakstien. De stinzen fungearje of as flechtboarch by in houten state, of binne yn letter tiid útwreide ta stiennen states. De iennichste útsûndering hjirby is de noch hieltiid net ynboude Skierstins. De muorren wienen dik, faak mear as in meter, koenen sjitgatten hawwe, en it gebou hie mear as ien ferdjipping. De yngong wie op earste etaazje en waard berikt fia in trep oan de bûtenkant dy't fuorthelle wurde koe. Doe't yn de 14e- en 15e iuw de bewapening better waard, fral troch it opkommen fan fjoerwapens, wienen stinzen net langer feilich. Alle eardere stinzen hjitte troch dy ûntwikling no "state" of boarch.


De hearehuzen wiene oarspronklik it besit fan de adelike famyljes dy't oer in soad lân beskikten. It meastepart fan de stinzen is yn de 19e iuw ôfbrutsen, omdat goed ûnderhâld faak te djoer waard foar de eigeners. Yn guon fan de noch besteande stinzen binne tsjintwurdich museums fêstige. Faak lizze by stinzen en boargen prachtige krûdetunen. Foar krûdetunen dy't al út de 16e of 17e iuw stamje wurdt it wurd stinzetún brûkt.


Stinzen komme ek foar yn East-Fryslân en yn Grinslân (Grinslânsk: stainhoes). Yn dy kontrijen hjitte dy lykwols - letter - boargen. It iennichst oerbleaune stienhûs yn Grinslân is it Iwema-Stienhûs yn Niebert. East-Fryslân hat der noch ien yn Bunderhee by Bunde.


Tanksij satellytprogramma's as Google Earth en Virtual Earth binne al in pear kear fûneminten fûn fan oant dan ta ûnbekende stinzen yn Grinslân. Amateurhistoarikus Johan Feikens hat ferskate yn de kontrei om de Dollard hinne fûn.



Sjoch ek |


  • States en stinzen

  • Stinzeplant



Boarnen, noaten en referinsjes




Boarnen, noaten en/as referinsjes:


  • Pieter Broesder, 'Internet toont verborgen steenhuizen. Amateurhistoricus doet opmerkelijke vondst', Deiblêd fan it Noarden (22-3-2008).



Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Stins&oldid=884941"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.016","walltime":"0.028","ppvisitednodes":"value":39,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":574,"limit":2097152,"templateargumentsize":"value":209,"limit":2097152,"expansiondepth":"value":3,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 4.970 1 Berjocht:Boarnen","100.00% 4.970 1 -total"," 49.48% 2.459 1 Berjocht:Aut"],"cachereport":"origin":"mw1330","timestamp":"20190301044248","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Stins","url":"https://fy.wikipedia.org/wiki/Stins","sameAs":"http://www.wikidata.org/entity/Q3802482","mainEntity":"http://www.wikidata.org/entity/Q3802482","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2007-05-11T20:40:37Z","dateModified":"2017-08-06T10:53:01Z","image":"https://upload.wikimedia.org/wikipedia/commons/5/50/Skierstins.jpg"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":116,"wgHostname":"mw1332"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε