Skip to main content

1797 Ynhâld Foarfallen | Berne | Ferstoarn | Literatuer | Boarnen, noaten en referinsjes Navigaasjemenu1797

179718e iuw













1797




Ut Wikipedy






Jump to navigation
Jump to search



























Iuwen:

13e

14e

15e

16e

17e

18e iuw

19e

20e

21e

22e

23e
Jierren:

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802






























Calendar-nl.pngKalinders

Gregoriaanske kalinder
 Crystal 128 date.png
1797
MDCCXCVII

Ab urbe condita
2550

Armeenske kalinder
1246

ԹՎ ՌՄԽԶ



Etiopyske kalinder
1789 – 1790

Hebriuwske kalinder
5557 – 5558

Hindoekalinders

- Vikram Samvat
1852 – 1853
- Shaka Samvat
1719 – 1720
- Kali Yuga
4898 – 4899

Iraanske kalinder
1175 – 1176

Islamityske kalinder
1212 – 1212

Juliaanske kalinder
 Crystal 128 date.png
Gregoriaansk
min 11 dgn.

Sineeske kalinder
4493 – 4494

癸辰 – 甲巳


1797 is in gewoan jier dat begjint mei in snein. (Gregoriaanske kalinder foar 1797.)




Ynhâld





  • 1 Foarfallen


  • 2 Berne


  • 3 Ferstoarn


  • 4 Literatuer


  • 5 Boarnen, noaten en referinsjes




Foarfallen |



  • 15 jannewaris - Foar it earst wurdt de hege hoed droegen, yn Londen troch John Etherington.


  • 3-4 febrewaris - It Kollumer Oproer fynt plak.


  • 17 febrewaris - Spanje slacht de oanfal fan 'e Britske admiraal Horatio Nelson op Gran Kanaria ôf.


  • 4 maart - John Adams wurdt de twadde presidint fan de FS. Hy regearret oant 1801.


  • 12 maaie - Nei in ultimatum dêrta jout de Republyk Feneesje him sûnder betingsten oer oan 'e Frânske troepen fan Napoleon.


  • 17 juny - De sjah fan Perzje, Aga Mohammed Khan Kadjar, wurdt yn Teheran fermoarde.


  • 4 septimber - Napoleon stiftet de Ligueryske Republyk en de Sisalpynske Republyk.


  • 17 oktober - Mei it sluten fan it Ferdrach fan Campio Formio wurdt de Republyk Feneesje, dy't dit jier persiis 1.100 jier bestiet, opheft en ferdield ûnder de Earste Frânske Republyk, de Sisalpynske Republyk (in Frânske fazalsteat) en it Aartshartochdom Eastenryk.


  • 22 oktober - De Frânsman André-Jacques Garnerin makket as earste in parasjutesprong mei in eigenmakke parasjute.


Berne |



  • 6 jannewaris - Edward Turner Bennett, Ingelsk biolooch († 1836)


  • 31 jannewaris - Franz Schubert, Eastenryksk komponist († 1828)


  • 4 febrewaris - Pieter Klazes Pel, Frysk bestjoerder, dokter en froedmaster († 1878)


  • 27 maart - Alfred de Vigny, Frânsk skriuwer († 1863)


  • 14 april - J.L.C. Schroeder van der Kolk, Frysk heechleraar anatomy en fysiology († 1862)


  • 17 maaie - Daniël de Blocq van Haersma de With, Frysk abbekaat, grytman en steatelid († 1856)


  • 11 july - Otto de Boer, Frysk keunstskilder († 1856)


  • 30 augustus - Mary Shelley, Ingelsk skriuwster († 1851)


  • 30 septimber - Hobbe Baerdt van Sminia, Frysk politikus († 1858)


  • 8 oktober - Eeltsje Hiddes Halbertsma, Frysk skriuwer en dokter († 1858)


  • 29 novimber - Gaetano Donizetti, Italjaansk komponist († 1848)


  • 13 desimber - Heinrich Heine, Dútsk skriuwer († 1856)

datum ûnbekend

  • Ando Hiroshige, Japansk keunstner († 1858)


  • Reade Mûtse (Red Cap), opperhaad fan 'e Eastlike Dakota († 1881)


Ferstoarn |



  • 18 febrewaris - Jan Binnes (Kloosterman), Frysk boer en opstanneling (* 1744)


  • 22 febrewaris - Karl Friedrich Hieronymus von Münchhausen (Baron von Münchhausen), Dútsk ofsier, aventoersman en swetser (* 1720)


  • 10 septimber - Mary Wollstonecraft, Ingelske skriuwster en feministe (* 1759)


  • 20 oktober - Dooitze Eelkes Hinxt, Frysk marine-offisier (* 1741)


  • 16 novimber - kening Freark Willem II fan Prusen (* 1744)

datum ûnbekend
  • jonker Wytse Fons, Frysk ealman en bollehâlder (* 17??)


Literatuer |


poëzij

  • Johann Wolfgang von Goethe, Der Zauberlehrling



























Jierren:

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

Iuwen:

13e

14e

15e

16e

17e

18e iuw

19e

20e

21e

22e

23e


Boarnen, noaten en referinsjes




Boarnen, noaten en/as referinsjes:


Commons





Untfongen fan "https://fy.wikipedia.org/w/index.php?title=1797&oldid=912684"










Navigaasjemenu


























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.096","walltime":"0.125","ppvisitednodes":"value":1392,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":18130,"limit":2097152,"templateargumentsize":"value":1580,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 67.406 1 -total"," 41.09% 27.698 1 Berjocht:Kalinders"," 30.54% 20.585 1 Berjocht:JiersideBoppe"," 19.45% 13.110 2 Berjocht:IuwPart"," 13.22% 8.911 2 Berjocht:JierPart"," 11.89% 8.012 1 Berjocht:JiersideUnder"," 8.07% 5.439 1 Berjocht:Boarnen"," 7.79% 5.250 1 Berjocht:Kalinderjier"," 6.77% 4.561 1 Berjocht:Armeenskal"," 5.17% 3.485 1 Berjocht:Romeinsk"],"cachereport":"origin":"mw1270","timestamp":"20190311091425","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"1797","url":"https://fy.wikipedia.org/wiki/1797","sameAs":"http://www.wikidata.org/entity/Q7820","mainEntity":"http://www.wikidata.org/entity/Q7820","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2006-02-24T13:26:22Z","dateModified":"2018-03-20T18:08:47Z","headline":"jier"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":128,"wgHostname":"mw1325"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε