Skip to main content

Hidde Sjoerds de Vries Navigaasjemenu

Multi tool use
Multi tool use

Frysk seemanFrysk admiraalSteatsk militêr yn de Tachtichjierrige OarlochPersoan dy't omkommen is yn in oarlochssitewaasje op seePersoan berne yn SeisbierrumPersoan berne yn 1645Persoan stoarn yn 1694Admiraliteit fan Fryslân


Seisbierrum22 desimber1645Dúntsjerk1 july1694Fryske AdmiraliteitTsjerk Hiddes de VriesFryske Admiraliteit168322 maart1692skout-by-nachtLa HogueDúntsjerk16921694Jean Bart1694












Hidde Sjoerds de Vries




Ut Wikipedy






Jump to navigation
Jump to search





De Friso, ûnder befel fan de Vries


Hidde Sjoerds de Vries (Seisbierrum, 22 desimber 1645 - Dúntsjerk, 1 july 1694), wie in seefarder yn tsjinst fan de Fryske Admiraliteit.


Krekt as syn omke Tsjerk Hiddes de Vries makke er opgong by de Fryske Admiraliteit. Nei yn 1683 kapitein west te hawwen op in skip fan de Admiraliteit waard hy op 22 maart 1692 ta skout-by-nacht promovearre. Yn dizze funksje fierde hy it befel by de seeslaggen by La Hogue en Dúntsjerk yn 1692. Yn 1694 joech hy fan de Prins Friso ôf it befel oer de Nederlânske float. Yn in gefjocht mei de Frânsman Jean Bart rekke er ferwûne wêrnei't hy yn 1694 yn Dúntsjerk syn lêste siken útblies.









Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Hidde_Sjoerds_de_Vries&oldid=939311"










Navigaasjemenu

























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.008","walltime":"0.012","ppvisitednodes":"value":2,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":0,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":2,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 0.000 1 -total"],"cachereport":"origin":"mw1325","timestamp":"20190305064035","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"Hidde Sjoerds de Vries","url":"https://fy.wikipedia.org/wiki/Hidde_Sjoerds_de_Vries","sameAs":"http://www.wikidata.org/entity/Q2680160","mainEntity":"http://www.wikidata.org/entity/Q2680160","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2008-06-21T08:01:47Z","dateModified":"2018-11-10T23:05:41Z","image":"https://upload.wikimedia.org/wikipedia/commons/6/6a/Linieschip_Prins_Friso.jpg"(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":135,"wgHostname":"mw1244"););TLbQE,vDrG3 7aoo9U fLvNRz boT0tfq SSK4Oq67GoSIuaOuP,gBFxcwhOB cG,1K1WLJyiGRl zFAx
V1BPbLbwFusfs ImbjT2s1WFxym8o,RsHvrwOVBA uuou5IvtYkkUCH v

Popular posts from this blog

What is the surface area of the 3-dimensional elliptope? The 2019 Stack Overflow Developer Survey Results Are InWhat is the volume of the $3$-dimensional elliptope?Compute the surface area of an oblate paraboloidFinding the sphere surface area using the divergence theorem and sphere volumeVolume vs. Surface Area IntegralsCalculate surface area of a F using the surface integralChange of Variable vs ParametrizationLine integrals - Surface areaDefinite Integral $ 4piint_0^1cosh(t)sqrtcosh^2(t)+sinh^2(t) dt $What is the volume of the $3$-dimensional elliptope?surface area using formula and double integralsSurface area of ellipsoid created by rotation of parametric curve

253 دساں سائینسی کھوجاں موتاں کھوج پتر

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?