Finding $limlimits_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$Evaluate $int_0^1 frac1 x^2+2x+3,mathrm dx$Show how $fracpartialpartial x left[int_0^x (x-t)g(t),mathrmdtright] = int_0^x g(t),mathrmdt$Evaluate $large int_0^1left(frac1ln x + frac11-xright)^2 mathrm dx $ using elementary, high school techniquesFind the limit $lim_limitsxto 0^+left( e^frac1sin x-e^frac1xright)$L'Hopital rule to solve $ limlimits_xto 0 left(fracsin xxright)^frac1x^2 $Compute the limit $lim_ntoinfty nleft [int_0^frac pi4tan^n left ( fracxn right )mathrm dxright]^frac1n$How to find $limlimits_xto 0^+ frac1x int_0^x sin(frac1t),mathrm dt$$n^2 int_0^1 (1-x)^n sin(pi x) mathrmdx$If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$

What is the difference between "behavior" and "behaviour"?

How easy is it to start Magic from scratch?

How to escape string to filename? It is in backup a file append date

Why, precisely, is argon used in neutrino experiments?

What is paid subscription needed for in Mortal Kombat 11?

How many times can American Tourist re-enter UK in same 6 month period?

How does Loki do this?

How to check is there any negative term in a large list?

Is `x >> pure y` equivalent to `liftM (const y) x`

What can we do to stop prior company from asking us questions?

Tiptoe or tiphoof? Adjusting words to better fit fantasy races

Was Spock the First Vulcan in Starfleet?

What is the intuitive meaning of having a linear relationship between the logs of two variables?

Is this version of a gravity generator feasible?

What is the opposite of 'gravitas'?

Is a stroke of luck acceptable after a series of unfavorable events?

Gears on left are inverse to gears on right?

Sequence of Tenses: Translating the subjunctive

How to draw lines on a tikz-cd diagram

Lay out the Carpet

CREATE opcode: what does it really do?

Detecting if an element is found inside a container

Pole-zeros of a real-valued causal FIR system

Avoiding estate tax by giving multiple gifts



Finding $limlimits_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$


Evaluating $lim limits_nto infty,,, n!! intlimits_0^pi/2!! left(1-sqrt [n]sin x right),mathrm dx$Evaluate $int_0^1 frac1 x^2+2x+3,mathrm dx$Show how $fracpartialpartial x left[int_0^x (x-t)g(t),mathrmdtright] = int_0^x g(t),mathrmdt$Evaluate $large int_0^1left(frac1ln x + frac11-xright)^2 mathrm dx $ using elementary, high school techniquesFind the limit $lim_limitsxto 0^+left( e^frac1sin x-e^frac1xright)$L'Hopital rule to solve $ limlimits_xto 0 left(fracsin xxright)^frac1x^2 $Compute the limit $lim_ntoinfty nleft [int_0^frac pi4tan^n left ( fracxn right )mathrm dxright]^frac1n$How to find $limlimits_xto 0^+ frac1x int_0^x sin(frac1t),mathrm dt$$n^2 int_0^1 (1-x)^n sin(pi x) mathrmdx$If $I_n=int_0^1 fracx^nx^2+2019,mathrm dx$, evaluate $limlimits_nto infty nI_n$













5












$begingroup$


$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!










share|cite|improve this question











$endgroup$











  • $begingroup$
    (pinch theorem)
    $endgroup$
    – mathworker21
    15 hours ago










  • $begingroup$
    there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
    $endgroup$
    – mathworker21
    15 hours ago










  • $begingroup$
    I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
    $endgroup$
    – Darkrai
    14 hours ago










  • $begingroup$
    After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
    $endgroup$
    – Dr. Wolfgang Hintze
    14 hours ago







  • 1




    $begingroup$
    Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
    $endgroup$
    – Sangchul Lee
    10 hours ago















5












$begingroup$


$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!










share|cite|improve this question











$endgroup$











  • $begingroup$
    (pinch theorem)
    $endgroup$
    – mathworker21
    15 hours ago










  • $begingroup$
    there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
    $endgroup$
    – mathworker21
    15 hours ago










  • $begingroup$
    I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
    $endgroup$
    – Darkrai
    14 hours ago










  • $begingroup$
    After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
    $endgroup$
    – Dr. Wolfgang Hintze
    14 hours ago







  • 1




    $begingroup$
    Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
    $endgroup$
    – Sangchul Lee
    10 hours ago













5












5








5


4



$begingroup$


$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!










share|cite|improve this question











$endgroup$




$$lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4,mathrm dx$$I don't know how to solve this limit problem. I'm roughly clear about using the pinch theorem, but I haven't done it yet. Could somebody please tell me? Thanks!







calculus integration limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 11 hours ago









rash

550115




550115










asked 15 hours ago









赵家艺赵家艺

362




362











  • $begingroup$
    (pinch theorem)
    $endgroup$
    – mathworker21
    15 hours ago










  • $begingroup$
    there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
    $endgroup$
    – mathworker21
    15 hours ago










  • $begingroup$
    I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
    $endgroup$
    – Darkrai
    14 hours ago










  • $begingroup$
    After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
    $endgroup$
    – Dr. Wolfgang Hintze
    14 hours ago







  • 1




    $begingroup$
    Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
    $endgroup$
    – Sangchul Lee
    10 hours ago
















  • $begingroup$
    (pinch theorem)
    $endgroup$
    – mathworker21
    15 hours ago










  • $begingroup$
    there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
    $endgroup$
    – mathworker21
    15 hours ago










  • $begingroup$
    I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
    $endgroup$
    – Darkrai
    14 hours ago










  • $begingroup$
    After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
    $endgroup$
    – Dr. Wolfgang Hintze
    14 hours ago







  • 1




    $begingroup$
    Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
    $endgroup$
    – Sangchul Lee
    10 hours ago















$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
15 hours ago




$begingroup$
(pinch theorem)
$endgroup$
– mathworker21
15 hours ago












$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
15 hours ago




$begingroup$
there's some formula like $sum_ le N e(ntheta) = fracsin(Ntheta)sin(theta)$. Something like that. I think that should be useful
$endgroup$
– mathworker21
15 hours ago












$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
14 hours ago




$begingroup$
I checked through W|A for values of $n$ as high as $nsim 20000$ and it seems that the limit does exist and is equal to $ln 2$. But at present I don't have a rigorous proof for the same.
$endgroup$
– Darkrai
14 hours ago












$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
14 hours ago





$begingroup$
After a lengthy semi-heuristic study I suspect the simple result $lim = log(2) simeq 0.6931471805599453..$
$endgroup$
– Dr. Wolfgang Hintze
14 hours ago





1




1




$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
10 hours ago




$begingroup$
Another way to reach the integral in Tianlalu's answer is as follows: Substituting $nx = u$ and writing $operatornamesinc(x) = fracsin xx$, we have $$ frac1n^2 int_0^fracpi2 x fracsin^4(nx)sin^4 x , mathrmdx = int_0^fracn pi2 fracsin^4 uu^3 operatornamesinc^4(u/n) , mathrmd u xrightarrow[ntoinfty]textDCT int_0^infty fracsin^4 uu^3 , mathrmd u, $$ where the convergence follows from the dominated convergence together with the integrable dominating function $Cu^-3sin^4 u$ for some constant $C > 0$.
$endgroup$
– Sangchul Lee
10 hours ago










2 Answers
2






active

oldest

votes


















8












$begingroup$

From
$$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
for $xin(0,fracpi 2)$, there is $C$ such that
$$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



Thus,
beginalign*
lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
&= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
&= int_0^inftyfracsin^4 xx^3, mathrm dx\
text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
&= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
text(Frullani)quad &=ln 2.
endalign*






share|cite|improve this answer









$endgroup$




















    4












    $begingroup$

    Result



    Let



    $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



    then



    $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



    This result is in good agreement with the numerical estimate of the integral.



    Derivation



    This is more heuristic and not really strict. Maybe others can fill in the gaps.



    We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



    $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



    where



    $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



    The first two values are



    $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
    $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



    and for $k ge 3$



    $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



    Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



    The sum in $(1)$ telescopes and we are left with the announced result.



    Discussion



    My statement "the sum telescopes" is fairly bold.



    In fact, the cancellation is like this



    $$textCi(-4 pi )-textCi(4 pi )=i pi$$
    $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



    see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.






    share|cite|improve this answer











    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164171%2ffinding-lim-limits-n-to-infty-frac1n2-int-0-frac-pi2x-left-frac-si%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      8












      $begingroup$

      From
      $$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
      for $xin(0,fracpi 2)$, there is $C$ such that
      $$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



      Thus,
      beginalign*
      lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
      &= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
      &= int_0^inftyfracsin^4 xx^3, mathrm dx\
      text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
      text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
      &= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
      text(Frullani)quad &=ln 2.
      endalign*






      share|cite|improve this answer









      $endgroup$

















        8












        $begingroup$

        From
        $$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
        for $xin(0,fracpi 2)$, there is $C$ such that
        $$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



        Thus,
        beginalign*
        lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
        &= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
        &= int_0^inftyfracsin^4 xx^3, mathrm dx\
        text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
        text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
        &= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
        text(Frullani)quad &=ln 2.
        endalign*






        share|cite|improve this answer









        $endgroup$















          8












          8








          8





          $begingroup$

          From
          $$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
          for $xin(0,fracpi 2)$, there is $C$ such that
          $$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



          Thus,
          beginalign*
          lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
          &= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
          &= int_0^inftyfracsin^4 xx^3, mathrm dx\
          text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
          text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
          &= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
          text(Frullani)quad &=ln 2.
          endalign*






          share|cite|improve this answer









          $endgroup$



          From
          $$lim_xto 0x^2left(frac1sin^4 x-frac1x^4right)=frac23,$$
          for $xin(0,fracpi 2)$, there is $C$ such that
          $$left|fracxsin^4 nxsin^4 x-fracsin^4 nxx^3right|le fracCsin^4 nxxle Cn.$$



          Thus,
          beginalign*
          lim_ntoinftyfrac1n^2int_0^fracpi2xleft(fracsin nxsin xright)^4, mathrm dx&=lim_ntoinftyfrac1n^2int_0^fracpi2fracsin^4 nxx^3, mathrm dx\
          &= lim_ntoinftyint_0^fracnpi2fracsin^4 xx^3, mathrm dx\
          &= int_0^inftyfracsin^4 xx^3, mathrm dx\
          text(IBP)quad &= int_0^inftyfrac2sin^3 xcos xx^2, mathrm dx\
          text(IBP)quad &= int_0^inftyfrac6sin^2 xcos^2 x-2sin^4 xx, mathrm dx\
          &= int_0^inftyfraccos 2x-cos 4xx, mathrm dx\
          text(Frullani)quad &=ln 2.
          endalign*







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 12 hours ago









          TianlaluTianlalu

          3,16721138




          3,16721138





















              4












              $begingroup$

              Result



              Let



              $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



              then



              $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



              This result is in good agreement with the numerical estimate of the integral.



              Derivation



              This is more heuristic and not really strict. Maybe others can fill in the gaps.



              We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



              $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



              where



              $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



              The first two values are



              $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
              $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



              and for $k ge 3$



              $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



              Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



              The sum in $(1)$ telescopes and we are left with the announced result.



              Discussion



              My statement "the sum telescopes" is fairly bold.



              In fact, the cancellation is like this



              $$textCi(-4 pi )-textCi(4 pi )=i pi$$
              $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



              see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.






              share|cite|improve this answer











              $endgroup$

















                4












                $begingroup$

                Result



                Let



                $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



                then



                $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



                This result is in good agreement with the numerical estimate of the integral.



                Derivation



                This is more heuristic and not really strict. Maybe others can fill in the gaps.



                We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



                $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



                where



                $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



                The first two values are



                $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
                $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



                and for $k ge 3$



                $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



                Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



                The sum in $(1)$ telescopes and we are left with the announced result.



                Discussion



                My statement "the sum telescopes" is fairly bold.



                In fact, the cancellation is like this



                $$textCi(-4 pi )-textCi(4 pi )=i pi$$
                $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



                see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.






                share|cite|improve this answer











                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  Result



                  Let



                  $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



                  then



                  $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



                  This result is in good agreement with the numerical estimate of the integral.



                  Derivation



                  This is more heuristic and not really strict. Maybe others can fill in the gaps.



                  We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



                  $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



                  where



                  $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



                  The first two values are



                  $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
                  $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



                  and for $k ge 3$



                  $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



                  Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



                  The sum in $(1)$ telescopes and we are left with the announced result.



                  Discussion



                  My statement "the sum telescopes" is fairly bold.



                  In fact, the cancellation is like this



                  $$textCi(-4 pi )-textCi(4 pi )=i pi$$
                  $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



                  see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.






                  share|cite|improve this answer











                  $endgroup$



                  Result



                  Let



                  $$f(n) = int_0^fracpi 2 x left(fracsin (n x)sin (x)right)^4 , dx$$



                  then



                  $$lim_nto infty , fracf(n)n^2=log (2)simeq 0.6931471805599453 ...$$



                  This result is in good agreement with the numerical estimate of the integral.



                  Derivation



                  This is more heuristic and not really strict. Maybe others can fill in the gaps.



                  We split the integral into equally spaced intervals, and observe $sin(pi x/n) simeq pi x/n$ for $nto infty$ and get



                  $$lim_nto infty f(n)/n^2 =lim_nto infty sum_k=1^infty a(k)tag1$$



                  where



                  $$a(k) = int_k-1^k pi ^2 s left(fracsin (pi s)pi sright)^4 , ds$$



                  The first two values are



                  $$a(1) = textCi(2 pi )-textCi(4 pi )+log (2)$$
                  $$a(2) = -textCi(-8 pi )+textCi(-4 pi )-textCi(2 pi )+textCi(4 pi )$$



                  and for $k ge 3$



                  $$a(k) = -textCi(2 (k-1) pi )+textCi(4 (k-1) pi )-textCi(-4 k pi )+textCi(-2 k pi )$$



                  Here $textCi(z) = -int_-infty ^z fraccos (t)t , dt$ is the cosine integral.



                  The sum in $(1)$ telescopes and we are left with the announced result.



                  Discussion



                  My statement "the sum telescopes" is fairly bold.



                  In fact, the cancellation is like this



                  $$textCi(-4 pi )-textCi(4 pi )=i pi$$
                  $$textCi(8 pi )-textCi(-8 pi )=-i pi$$



                  see symmetry relations in http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf, 5.2.20, and the sum of these two lines is $0$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 11 hours ago

























                  answered 13 hours ago









                  Dr. Wolfgang HintzeDr. Wolfgang Hintze

                  3,825620




                  3,825620



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3164171%2ffinding-lim-limits-n-to-infty-frac1n2-int-0-frac-pi2x-left-frac-si%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                      Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε