How to evaluate $S=int_partial Dfrac1^2ds(y)$?A Particular Metric: $(mathbbR^2,d_2)$Linear transformation that does thisShow that $int_[0,1]^2g(y_1-y_2) Bbb1_y_1>y_2dy_1dy_2 = int_[0,1]g(m)(1-m), dm$Product metric spaces is again a metric spaceSum of two Dense setsHow do I show that for a multivariate function, Lipschitz continuity in each variable implies Lipschitz continuity for the whole function?Continuity of the inverse mapGiven two real numbers $a$ and $b$ such that $a<b$, what about the convergence of these two sequences?Partial derivative of function with respect to itselfLipschitz property of $f(x,y)= fracxysqrtx^2+y^2$ for $(x,y)neq (0,0)$ and $f(0,0)=0.$

How did Arya survive the stabbing?

A problem in Probability theory

What is the opposite of 'gravitas'?

Do the temporary hit points from the Battlerager barbarian's Reckless Abandon stack if I make multiple attacks on my turn?

What is paid subscription needed for in Mortal Kombat 11?

Why does indent disappear in lists?

Escape a backup date in a file name

Term for the "extreme-extension" version of a straw man fallacy?

Return the Closest Prime Number

Pole-zeros of a real-valued causal FIR system

How to check is there any negative term in a large list?

Purchasing a ticket for someone else in another country?

How do scammers retract money, while you can’t?

What is the intuitive meaning of having a linear relationship between the logs of two variables?

Is there a problem with hiding "forgot password" until it's needed?

Valid Badminton Score?

Where does the Z80 processor start executing from?

Customer Requests (Sometimes) Drive Me Bonkers!

How do I go from 300 unfinished/half written blog posts, to published posts?

Avoiding estate tax by giving multiple gifts

How did Doctor Strange see the winning outcome in Avengers: Infinity War?

How can I quit an app using Terminal?

Why not increase contact surface when reentering the atmosphere?

Arithmetic mean geometric mean inequality unclear



How to evaluate $S=int_partial Dfrac1x-yds(y)$?


A Particular Metric: $(mathbbR^2,d_2)$Linear transformation that does thisShow that $int_[0,1]^2g(y_1-y_2) Bbb1_y_1>y_2dy_1dy_2 = int_[0,1]g(m)(1-m), dm$Product metric spaces is again a metric spaceSum of two Dense setsHow do I show that for a multivariate function, Lipschitz continuity in each variable implies Lipschitz continuity for the whole function?Continuity of the inverse mapGiven two real numbers $a$ and $b$ such that $a<b$, what about the convergence of these two sequences?Partial derivative of function with respect to itselfLipschitz property of $f(x,y)= fracxysqrtx^2+y^2$ for $(x,y)neq (0,0)$ and $f(0,0)=0.$













2












$begingroup$


Let $D=B(0,r_0), x,y in mathbbR^3$ and $xin D$.
beginalign*
& S=int_partial Dfrac1x-yds(y)=int_partial Dfrac1(x_1-y_1)^2+(x_2-y_2)^2+(x_3-y_3)^2ds(y)
endalign*

I want to prove that $Sleq k$ ($k>0$ and $k$ only depends on $r_0$).



In case $x ne 0$, my idea is
beginsplit
S^+ &=int_y_1^2+y_2^2leq r_0^2frac1(x_1-y_1)^2+(x_2-y_2)^2+Big(x_3-sqrtr_0^2-y_1^2-y_2^2Big)^2fracr_0sqrtr_0^2-y_1^2-y_2^2dy_1dy_2\
&leq int_y_1^2+y_2^2leq r_0^2frac1Big(x_3-sqrtr_0^2-y_1^2-y_2^2Big)^2fracr_0sqrtr_0^2-y_1^2-y_2^2dy_1dy_2: text (assume x_3 ne 0)
endsplit

Let $y_1=rcosphi, y_2=rsinphi, 0leq phi leq 2pi$
beginsplit
S^+&=int_0^2pidphiint_0^r_0frac1Big(x_3-sqrtr_0^2-r^2Big)^2fracr_0sqrtr_0^2-r^2rdr\
&=2r_0pileft(frac1-x_3-frac1r_0-x_3right)\
endsplit

with $-r_0<x_3<r_0, x_3 ne 0$, I can't show that $left(frac1-x_3-frac1r_0-x_3right)$ is bounded. Please help me, thank you so much!










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What has this to do with functional-analysis?
    $endgroup$
    – José Carlos Santos
    yesterday






  • 1




    $begingroup$
    It's not true... for instance, when $|x-y|to 0$, it explose.
    $endgroup$
    – user657324
    yesterday










  • $begingroup$
    @user657324 since $xin D$ and $y in partial D$ there exists $delta>0$ with $|x-y|>delta$
    $endgroup$
    – Chloe.Sannon
    yesterday











  • $begingroup$
    Yes, but $delta $ depend on $x$, so you can't upper bound $S$ uniformly in $x$. @Chloe.Sannon
    $endgroup$
    – user657324
    yesterday
















2












$begingroup$


Let $D=B(0,r_0), x,y in mathbbR^3$ and $xin D$.
beginalign*
& S=int_partial Dfrac1x-yds(y)=int_partial Dfrac1(x_1-y_1)^2+(x_2-y_2)^2+(x_3-y_3)^2ds(y)
endalign*

I want to prove that $Sleq k$ ($k>0$ and $k$ only depends on $r_0$).



In case $x ne 0$, my idea is
beginsplit
S^+ &=int_y_1^2+y_2^2leq r_0^2frac1(x_1-y_1)^2+(x_2-y_2)^2+Big(x_3-sqrtr_0^2-y_1^2-y_2^2Big)^2fracr_0sqrtr_0^2-y_1^2-y_2^2dy_1dy_2\
&leq int_y_1^2+y_2^2leq r_0^2frac1Big(x_3-sqrtr_0^2-y_1^2-y_2^2Big)^2fracr_0sqrtr_0^2-y_1^2-y_2^2dy_1dy_2: text (assume x_3 ne 0)
endsplit

Let $y_1=rcosphi, y_2=rsinphi, 0leq phi leq 2pi$
beginsplit
S^+&=int_0^2pidphiint_0^r_0frac1Big(x_3-sqrtr_0^2-r^2Big)^2fracr_0sqrtr_0^2-r^2rdr\
&=2r_0pileft(frac1-x_3-frac1r_0-x_3right)\
endsplit

with $-r_0<x_3<r_0, x_3 ne 0$, I can't show that $left(frac1-x_3-frac1r_0-x_3right)$ is bounded. Please help me, thank you so much!










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    What has this to do with functional-analysis?
    $endgroup$
    – José Carlos Santos
    yesterday






  • 1




    $begingroup$
    It's not true... for instance, when $|x-y|to 0$, it explose.
    $endgroup$
    – user657324
    yesterday










  • $begingroup$
    @user657324 since $xin D$ and $y in partial D$ there exists $delta>0$ with $|x-y|>delta$
    $endgroup$
    – Chloe.Sannon
    yesterday











  • $begingroup$
    Yes, but $delta $ depend on $x$, so you can't upper bound $S$ uniformly in $x$. @Chloe.Sannon
    $endgroup$
    – user657324
    yesterday














2












2








2





$begingroup$


Let $D=B(0,r_0), x,y in mathbbR^3$ and $xin D$.
beginalign*
& S=int_partial Dfrac1x-yds(y)=int_partial Dfrac1(x_1-y_1)^2+(x_2-y_2)^2+(x_3-y_3)^2ds(y)
endalign*

I want to prove that $Sleq k$ ($k>0$ and $k$ only depends on $r_0$).



In case $x ne 0$, my idea is
beginsplit
S^+ &=int_y_1^2+y_2^2leq r_0^2frac1(x_1-y_1)^2+(x_2-y_2)^2+Big(x_3-sqrtr_0^2-y_1^2-y_2^2Big)^2fracr_0sqrtr_0^2-y_1^2-y_2^2dy_1dy_2\
&leq int_y_1^2+y_2^2leq r_0^2frac1Big(x_3-sqrtr_0^2-y_1^2-y_2^2Big)^2fracr_0sqrtr_0^2-y_1^2-y_2^2dy_1dy_2: text (assume x_3 ne 0)
endsplit

Let $y_1=rcosphi, y_2=rsinphi, 0leq phi leq 2pi$
beginsplit
S^+&=int_0^2pidphiint_0^r_0frac1Big(x_3-sqrtr_0^2-r^2Big)^2fracr_0sqrtr_0^2-r^2rdr\
&=2r_0pileft(frac1-x_3-frac1r_0-x_3right)\
endsplit

with $-r_0<x_3<r_0, x_3 ne 0$, I can't show that $left(frac1-x_3-frac1r_0-x_3right)$ is bounded. Please help me, thank you so much!










share|cite|improve this question











$endgroup$




Let $D=B(0,r_0), x,y in mathbbR^3$ and $xin D$.
beginalign*
& S=int_partial Dfrac1x-yds(y)=int_partial Dfrac1(x_1-y_1)^2+(x_2-y_2)^2+(x_3-y_3)^2ds(y)
endalign*

I want to prove that $Sleq k$ ($k>0$ and $k$ only depends on $r_0$).



In case $x ne 0$, my idea is
beginsplit
S^+ &=int_y_1^2+y_2^2leq r_0^2frac1(x_1-y_1)^2+(x_2-y_2)^2+Big(x_3-sqrtr_0^2-y_1^2-y_2^2Big)^2fracr_0sqrtr_0^2-y_1^2-y_2^2dy_1dy_2\
&leq int_y_1^2+y_2^2leq r_0^2frac1Big(x_3-sqrtr_0^2-y_1^2-y_2^2Big)^2fracr_0sqrtr_0^2-y_1^2-y_2^2dy_1dy_2: text (assume x_3 ne 0)
endsplit

Let $y_1=rcosphi, y_2=rsinphi, 0leq phi leq 2pi$
beginsplit
S^+&=int_0^2pidphiint_0^r_0frac1Big(x_3-sqrtr_0^2-r^2Big)^2fracr_0sqrtr_0^2-r^2rdr\
&=2r_0pileft(frac1-x_3-frac1r_0-x_3right)\
endsplit

with $-r_0<x_3<r_0, x_3 ne 0$, I can't show that $left(frac1-x_3-frac1r_0-x_3right)$ is bounded. Please help me, thank you so much!







real-analysis singular-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









folouer of kaklas

340110




340110










asked yesterday









Chloe.SannonChloe.Sannon

1208




1208







  • 1




    $begingroup$
    What has this to do with functional-analysis?
    $endgroup$
    – José Carlos Santos
    yesterday






  • 1




    $begingroup$
    It's not true... for instance, when $|x-y|to 0$, it explose.
    $endgroup$
    – user657324
    yesterday










  • $begingroup$
    @user657324 since $xin D$ and $y in partial D$ there exists $delta>0$ with $|x-y|>delta$
    $endgroup$
    – Chloe.Sannon
    yesterday











  • $begingroup$
    Yes, but $delta $ depend on $x$, so you can't upper bound $S$ uniformly in $x$. @Chloe.Sannon
    $endgroup$
    – user657324
    yesterday













  • 1




    $begingroup$
    What has this to do with functional-analysis?
    $endgroup$
    – José Carlos Santos
    yesterday






  • 1




    $begingroup$
    It's not true... for instance, when $|x-y|to 0$, it explose.
    $endgroup$
    – user657324
    yesterday










  • $begingroup$
    @user657324 since $xin D$ and $y in partial D$ there exists $delta>0$ with $|x-y|>delta$
    $endgroup$
    – Chloe.Sannon
    yesterday











  • $begingroup$
    Yes, but $delta $ depend on $x$, so you can't upper bound $S$ uniformly in $x$. @Chloe.Sannon
    $endgroup$
    – user657324
    yesterday








1




1




$begingroup$
What has this to do with functional-analysis?
$endgroup$
– José Carlos Santos
yesterday




$begingroup$
What has this to do with functional-analysis?
$endgroup$
– José Carlos Santos
yesterday




1




1




$begingroup$
It's not true... for instance, when $|x-y|to 0$, it explose.
$endgroup$
– user657324
yesterday




$begingroup$
It's not true... for instance, when $|x-y|to 0$, it explose.
$endgroup$
– user657324
yesterday












$begingroup$
@user657324 since $xin D$ and $y in partial D$ there exists $delta>0$ with $|x-y|>delta$
$endgroup$
– Chloe.Sannon
yesterday





$begingroup$
@user657324 since $xin D$ and $y in partial D$ there exists $delta>0$ with $|x-y|>delta$
$endgroup$
– Chloe.Sannon
yesterday













$begingroup$
Yes, but $delta $ depend on $x$, so you can't upper bound $S$ uniformly in $x$. @Chloe.Sannon
$endgroup$
– user657324
yesterday





$begingroup$
Yes, but $delta $ depend on $x$, so you can't upper bound $S$ uniformly in $x$. @Chloe.Sannon
$endgroup$
– user657324
yesterday











2 Answers
2






active

oldest

votes


















1












$begingroup$

You may use spherical coordinates and the cosine-theorem:
$$
frac1x-y = frac1
$$

where $theta_x,y$ is the angle between $x$ and $y$.
Putting it into the integral you have:
$$
intlimits_fracdsx-y =
intlimits_frac r_0^2sin(theta) dphi dthetax=2pi r_0^2intlimits_-1^1frac dcos(theta)x
$$

where we chose to allign $x$ along the z-axis, which we are free to do due to symmetry. Then $theta_x,y$ simply becomes the coordinate $theta$.






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    Clearly,
    $$
    F(y)=int_fracds^2
    $$

    is a function of $|y|$. For simplicity, assume that $y=(|y|,0,0)$.



    Since the sphere is a solid by revolution, and in particular of revolution of the graph of the function $f(x)=sqrtr^2-x^2$ around the $x-$axis, then
    $$
    F(y)=2piint_-r_0^r_0 f(x)sqrt1+big(f'(x)big)^2g(x),dx
    =cdots=2pi r_0int_-r_0^r_0 g(x),dx
    $$

    where
    $$
    g(x)=frac1big(x,sqrtr_0^2-x^2,0big)-(=frac1(x-=frac1r_0^2-2x
    $$

    and hence
    $$
    F(y)=2pi r_0int_-r_0^r_0fracdxy=
    left.-fraclog(r_0^2+yright|_-r_0^r_0
    =fraclogleft(fracyr^2_0-2r_0right)y=
    frac
    logleft(
    fracr_0+y
    right)

    $$

    Clearly,
    $$
    lim_yF(y)=infty
    $$






    share|cite|improve this answer









    $endgroup$












      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162841%2fhow-to-evaluate-s-int-partial-d-frac1x-y2dsy%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      You may use spherical coordinates and the cosine-theorem:
      $$
      frac1x-y = frac1
      $$

      where $theta_x,y$ is the angle between $x$ and $y$.
      Putting it into the integral you have:
      $$
      intlimits_fracdsx-y =
      intlimits_frac r_0^2sin(theta) dphi dthetax=2pi r_0^2intlimits_-1^1frac dcos(theta)x
      $$

      where we chose to allign $x$ along the z-axis, which we are free to do due to symmetry. Then $theta_x,y$ simply becomes the coordinate $theta$.






      share|cite|improve this answer









      $endgroup$

















        1












        $begingroup$

        You may use spherical coordinates and the cosine-theorem:
        $$
        frac1x-y = frac1
        $$

        where $theta_x,y$ is the angle between $x$ and $y$.
        Putting it into the integral you have:
        $$
        intlimits_fracdsx-y =
        intlimits_frac r_0^2sin(theta) dphi dthetax=2pi r_0^2intlimits_-1^1frac dcos(theta)x
        $$

        where we chose to allign $x$ along the z-axis, which we are free to do due to symmetry. Then $theta_x,y$ simply becomes the coordinate $theta$.






        share|cite|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          You may use spherical coordinates and the cosine-theorem:
          $$
          frac1x-y = frac1
          $$

          where $theta_x,y$ is the angle between $x$ and $y$.
          Putting it into the integral you have:
          $$
          intlimits_fracdsx-y =
          intlimits_frac r_0^2sin(theta) dphi dthetax=2pi r_0^2intlimits_-1^1frac dcos(theta)x
          $$

          where we chose to allign $x$ along the z-axis, which we are free to do due to symmetry. Then $theta_x,y$ simply becomes the coordinate $theta$.






          share|cite|improve this answer









          $endgroup$



          You may use spherical coordinates and the cosine-theorem:
          $$
          frac1x-y = frac1
          $$

          where $theta_x,y$ is the angle between $x$ and $y$.
          Putting it into the integral you have:
          $$
          intlimits_fracdsx-y =
          intlimits_frac r_0^2sin(theta) dphi dthetax=2pi r_0^2intlimits_-1^1frac dcos(theta)x
          $$

          where we chose to allign $x$ along the z-axis, which we are free to do due to symmetry. Then $theta_x,y$ simply becomes the coordinate $theta$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          denklodenklo

          4457




          4457





















              1












              $begingroup$

              Clearly,
              $$
              F(y)=int_fracds^2
              $$

              is a function of $|y|$. For simplicity, assume that $y=(|y|,0,0)$.



              Since the sphere is a solid by revolution, and in particular of revolution of the graph of the function $f(x)=sqrtr^2-x^2$ around the $x-$axis, then
              $$
              F(y)=2piint_-r_0^r_0 f(x)sqrt1+big(f'(x)big)^2g(x),dx
              =cdots=2pi r_0int_-r_0^r_0 g(x),dx
              $$

              where
              $$
              g(x)=frac1big(x,sqrtr_0^2-x^2,0big)-(=frac1(x-=frac1r_0^2-2x
              $$

              and hence
              $$
              F(y)=2pi r_0int_-r_0^r_0fracdxy=
              left.-fraclog(r_0^2+yright|_-r_0^r_0
              =fraclogleft(fracyr^2_0-2r_0right)y=
              frac
              logleft(
              fracr_0+y
              right)

              $$

              Clearly,
              $$
              lim_yF(y)=infty
              $$






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                Clearly,
                $$
                F(y)=int_fracds^2
                $$

                is a function of $|y|$. For simplicity, assume that $y=(|y|,0,0)$.



                Since the sphere is a solid by revolution, and in particular of revolution of the graph of the function $f(x)=sqrtr^2-x^2$ around the $x-$axis, then
                $$
                F(y)=2piint_-r_0^r_0 f(x)sqrt1+big(f'(x)big)^2g(x),dx
                =cdots=2pi r_0int_-r_0^r_0 g(x),dx
                $$

                where
                $$
                g(x)=frac1big(x,sqrtr_0^2-x^2,0big)-(=frac1(x-=frac1r_0^2-2x
                $$

                and hence
                $$
                F(y)=2pi r_0int_-r_0^r_0fracdxy=
                left.-fraclog(r_0^2+yright|_-r_0^r_0
                =fraclogleft(fracyr^2_0-2r_0right)y=
                frac
                logleft(
                fracr_0+y
                right)

                $$

                Clearly,
                $$
                lim_yF(y)=infty
                $$






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  Clearly,
                  $$
                  F(y)=int_fracds^2
                  $$

                  is a function of $|y|$. For simplicity, assume that $y=(|y|,0,0)$.



                  Since the sphere is a solid by revolution, and in particular of revolution of the graph of the function $f(x)=sqrtr^2-x^2$ around the $x-$axis, then
                  $$
                  F(y)=2piint_-r_0^r_0 f(x)sqrt1+big(f'(x)big)^2g(x),dx
                  =cdots=2pi r_0int_-r_0^r_0 g(x),dx
                  $$

                  where
                  $$
                  g(x)=frac1big(x,sqrtr_0^2-x^2,0big)-(=frac1(x-=frac1r_0^2-2x
                  $$

                  and hence
                  $$
                  F(y)=2pi r_0int_-r_0^r_0fracdxy=
                  left.-fraclog(r_0^2+yright|_-r_0^r_0
                  =fraclogleft(fracyr^2_0-2r_0right)y=
                  frac
                  logleft(
                  fracr_0+y
                  right)

                  $$

                  Clearly,
                  $$
                  lim_yF(y)=infty
                  $$






                  share|cite|improve this answer









                  $endgroup$



                  Clearly,
                  $$
                  F(y)=int_fracds^2
                  $$

                  is a function of $|y|$. For simplicity, assume that $y=(|y|,0,0)$.



                  Since the sphere is a solid by revolution, and in particular of revolution of the graph of the function $f(x)=sqrtr^2-x^2$ around the $x-$axis, then
                  $$
                  F(y)=2piint_-r_0^r_0 f(x)sqrt1+big(f'(x)big)^2g(x),dx
                  =cdots=2pi r_0int_-r_0^r_0 g(x),dx
                  $$

                  where
                  $$
                  g(x)=frac1big(x,sqrtr_0^2-x^2,0big)-(=frac1(x-=frac1r_0^2-2x
                  $$

                  and hence
                  $$
                  F(y)=2pi r_0int_-r_0^r_0fracdxy=
                  left.-fraclog(r_0^2+yright|_-r_0^r_0
                  =fraclogleft(fracyr^2_0-2r_0right)y=
                  frac
                  logleft(
                  fracr_0+y
                  right)

                  $$

                  Clearly,
                  $$
                  lim_yF(y)=infty
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  Yiorgos S. SmyrlisYiorgos S. Smyrlis

                  63.6k1385165




                  63.6k1385165



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162841%2fhow-to-evaluate-s-int-partial-d-frac1x-y2dsy%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                      Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                      Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε