Skip to main content

Tori Amos Diskografy dêr in begjin mei te meitsjen

Newton22 augustus1963AmerikaansksjongsterCherokeeyndianenSkottenIerentsjerkeIngelânLittle EarthquakesRAINN






Haadmenu iepenje



Wikipedy












Tori Amos











function mfTempOpenSection(id)var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";



Commons-emblem-urgent.svg
Dizze side moat noch by de tiid brocht wurde.
Jo wurde útnûge om dêr in begjin mei te meitsjen





Tori Amos (2007)


Tori Amos (Newton, 22 augustus 1963) is in Amerikaansk sjongster en pianospylster dy't har eigen ferskes skriuwt en produsearret. Amosh har foarteam bestiet út Cherokee-yndianen fan har memmekant en Skotten en Ieren oan har heitekant.


Har heit wie dûmny, en doe't se in lyts famke wie spile se it oargel yn de tsjerke. ("and playing that organ must count for something, but mama, it was not my bullet") Op har 5e kaam se op it konservatoarium, dêr't se weistoerd is meidat se tefolle die wat hja sels woe en har âlden wienen net sa ryk, dus se hienen net de machtsmiddels om har it konservatoarium ôfmeitsje te litten. Ynstee dêrfan spile se yn hotels, restaurants en kroegen.


Har earste album smiet neat op, mar doe't se ûnder tafersjoch fan har platemaatskippij noch in kâns krige en har nei wenjen sette yn Ingelân, is se ferneamd wurden mei har album Little Earthquakes. Dat wie yn 1991 of 1992.


Har twadde album Under the Pink fersekere har fan eternal stardom, lokkich hie se nea safolle lêst fan stjerallures.


By har tredde album mislearre it mei de platemaatskippij en dêrom ferbruts se har kontrakt. De maatskippij joech har bygelyks net de kâns om in earste en twadde miskream te ferwurkjen. Hja moast de dei dêrnei al wer oan it wurk mei de promoasje fan har produkt.

Har sânde album Scarlet's walk kaam út op in nij lebel, lykas har albums The Beekeeper en American Doll Posse.


Tori Amos hat de organisaazje RAINN mei oprjochte en stipet dy organisaasje, "rape and incest national network", noch altiten.





Diskografy




  • Little Earthquakes (1992)


  • Under the Pink (1994)


  • Boys for Pele (1996)


  • From the Choirgirl Hotel (1998)


  • To Venus and Back (1999)


  • Strange Little Girls (2001)


  • Scarlet's Walk (2002)


  • The Beekeeper (2005)


  • American Doll Posse (2007)


  • Abnormally Attracted to Sin (2009)


  • Midwinter Graces (2009)


  • Night of Hunters (2011)


  • Gold Dust (2012)


  • Unrepentant Geraldines (2014)


  • Native Invader (2017)





Untfongen fan "https://fy.wikipedia.org/w/index.php?title=Tori_Amos&oldid=944256"







Wikipedy


Content is available under CC BY-SA 3.0 unless otherwise noted.








(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.016","walltime":"0.025","ppvisitednodes":"value":31,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":646,"limit":2097152,"templateargumentsize":"value":0,"limit":2097152,"expansiondepth":"value":3,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":0,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 5.036 1 Berjocht:By_de_tiid","100.00% 5.036 1 -total"],"cachereport":"origin":"mw1266","timestamp":"20190405065356","ttl":2592000,"transientcontent":false););(window.NORLQ=window.NORLQ||[]).push(function()var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i-1)img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);});(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":109,"wgHostname":"mw1242"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε