Find $lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.How to compute $prodlimits^infty_n=2 fracn^3-1n^3+1$$lim_n toinfty p_n = p$ implies $lim_n to inftyp_n^3 = p^3$Looking for fast text-booksHow to find $lim_n to infty int_0^1 cdots int_0^1 sqrtx_1+sqrtx_2+sqrtdots+sqrtx_ndx_1 dx_2dots dx_n$Find $lim_x rightarrow infty(fracxx^2+1cdot e^x)$Show that $lim_ntoinftyb_n=fracsqrtb^2-a^2arccosfracab$$lim_n rightarrow infty a_n = +infty, lim_n rightarrow infty b_n = +infty$ and $lim_n rightarrow infty(a_n + b_n ) = -infty$.Find $lim_nrightarrow inftyfrac(2n-1)!!(2n)!!.$Evaluate: $lim_xto 2fracx-2x^2-4$ without using L'Hôpital RuleEvaluate $lim_x to 0+ (e^1/sin x-e^(1/x))$Finding $lim_n rightarrow inftya_n$ given $lim_n rightarrow inftyfraca_n -1a_n + 1$
Is there a hemisphere-neutral way of specifying a season?
Infinite Abelian subgroup of infinite non Abelian group example
A reference to a well-known characterization of scattered compact spaces
Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?
1960's book about a plague that kills all white people
Is it canonical bit space?
I would say: "You are another teacher", but she is a woman and I am a man
What about the virus in 12 Monkeys?
Facing a paradox: Earnshaw's theorem in one dimension
Why are electrically insulating heatsinks so rare? Is it just cost?
I Accidentally Deleted a Stock Terminal Theme
How do I write bicross product symbols in latex?
Western buddy movie with a supernatural twist where a woman turns into an eagle at the end
Is it possible to run Internet Explorer on OS X El Capitan?
Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?
How can I fix/modify my tub/shower combo so the water comes out of the showerhead?
In a spin, are both wings stalled?
Why is the 'in' operator throwing an error with a string literal instead of logging false?
Why does Arabsat 6A need a Falcon Heavy to launch
What does it mean to describe someone as a butt steak?
What to put in ESTA if staying in US for a few days before going on to Canada
How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?
Is the Joker left-handed?
Assassin's bullet with mercury
Find $lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.
How to compute $prodlimits^infty_n=2 fracn^3-1n^3+1$$lim_n toinfty p_n = p$ implies $lim_n to inftyp_n^3 = p^3$Looking for fast text-booksHow to find $lim_n to infty int_0^1 cdots int_0^1 sqrtx_1+sqrtx_2+sqrtdots+sqrtx_ndx_1 dx_2dots dx_n$Find $lim_x rightarrow infty(fracxx^2+1cdot e^x)$Show that $lim_ntoinftyb_n=fracsqrtb^2-a^2arccosfracab$$lim_n rightarrow infty a_n = +infty, lim_n rightarrow infty b_n = +infty$ and $lim_n rightarrow infty(a_n + b_n ) = -infty$.Find $lim_nrightarrow inftyfrac(2n-1)!!(2n)!!.$Evaluate: $lim_xto 2fracx-2x^2-4$ without using L'Hôpital RuleEvaluate $lim_x to 0+ (e^1/sin x-e^(1/x))$Finding $lim_n rightarrow inftya_n$ given $lim_n rightarrow inftyfraca_n -1a_n + 1$
$begingroup$
$lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.
This is a past problem of a high-school level math compettion.
My tries:
1.Initially I thought of finding the product of the sequence.But then I realize there is no need of product coz' it'll make the function more complicated.
2.Then I tried to simplify first few terms so that may be in some way some of the middle terms may be cancelled out .
So the product of first few terms look sth like this,
$frac79cdotfrac2628cdotfrac6365cdotcdotfracn^3-1n^3+1$
But I could'nt find any pattern in this.So how the limit can be evaluated?
real-analysis limits
$endgroup$
add a comment |
$begingroup$
$lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.
This is a past problem of a high-school level math compettion.
My tries:
1.Initially I thought of finding the product of the sequence.But then I realize there is no need of product coz' it'll make the function more complicated.
2.Then I tried to simplify first few terms so that may be in some way some of the middle terms may be cancelled out .
So the product of first few terms look sth like this,
$frac79cdotfrac2628cdotfrac6365cdotcdotfracn^3-1n^3+1$
But I could'nt find any pattern in this.So how the limit can be evaluated?
real-analysis limits
$endgroup$
$begingroup$
math.stackexchange.com/questions/462082/…
$endgroup$
– lab bhattacharjee
Mar 29 at 3:45
$begingroup$
$displaystyle 2/3$ is the solution (explicitly).
$endgroup$
– Felix Marin
Mar 31 at 2:48
add a comment |
$begingroup$
$lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.
This is a past problem of a high-school level math compettion.
My tries:
1.Initially I thought of finding the product of the sequence.But then I realize there is no need of product coz' it'll make the function more complicated.
2.Then I tried to simplify first few terms so that may be in some way some of the middle terms may be cancelled out .
So the product of first few terms look sth like this,
$frac79cdotfrac2628cdotfrac6365cdotcdotfracn^3-1n^3+1$
But I could'nt find any pattern in this.So how the limit can be evaluated?
real-analysis limits
$endgroup$
$lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.
This is a past problem of a high-school level math compettion.
My tries:
1.Initially I thought of finding the product of the sequence.But then I realize there is no need of product coz' it'll make the function more complicated.
2.Then I tried to simplify first few terms so that may be in some way some of the middle terms may be cancelled out .
So the product of first few terms look sth like this,
$frac79cdotfrac2628cdotfrac6365cdotcdotfracn^3-1n^3+1$
But I could'nt find any pattern in this.So how the limit can be evaluated?
real-analysis limits
real-analysis limits
asked Mar 29 at 3:41
InvntoInvnto
727
727
$begingroup$
math.stackexchange.com/questions/462082/…
$endgroup$
– lab bhattacharjee
Mar 29 at 3:45
$begingroup$
$displaystyle 2/3$ is the solution (explicitly).
$endgroup$
– Felix Marin
Mar 31 at 2:48
add a comment |
$begingroup$
math.stackexchange.com/questions/462082/…
$endgroup$
– lab bhattacharjee
Mar 29 at 3:45
$begingroup$
$displaystyle 2/3$ is the solution (explicitly).
$endgroup$
– Felix Marin
Mar 31 at 2:48
$begingroup$
math.stackexchange.com/questions/462082/…
$endgroup$
– lab bhattacharjee
Mar 29 at 3:45
$begingroup$
math.stackexchange.com/questions/462082/…
$endgroup$
– lab bhattacharjee
Mar 29 at 3:45
$begingroup$
$displaystyle 2/3$ is the solution (explicitly).
$endgroup$
– Felix Marin
Mar 31 at 2:48
$begingroup$
$displaystyle 2/3$ is the solution (explicitly).
$endgroup$
– Felix Marin
Mar 31 at 2:48
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$
$endgroup$
$begingroup$
But I have no idea about the telescoping !!Can't be there some other simple ways!!
$endgroup$
– Invnto
Mar 29 at 4:06
1
$begingroup$
@Invnto he actually gave the answer. Look more closely.
$endgroup$
– amitava
Mar 29 at 4:10
$begingroup$
yeah!! Now I got it !!Actually I haven't observed the solution properly!!
$endgroup$
– Invnto
Mar 29 at 4:19
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign
$endgroup$
$begingroup$
Not sure this is the method intended for a high school competition :P
$endgroup$
– YiFan
Mar 31 at 2:57
$begingroup$
@YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
$endgroup$
– Felix Marin
Mar 31 at 3:01
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166717%2ffind-lim-n-rightarrow-infty-p-nwhreas-p-n-frac23-1231-cdot-frac%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$
$endgroup$
$begingroup$
But I have no idea about the telescoping !!Can't be there some other simple ways!!
$endgroup$
– Invnto
Mar 29 at 4:06
1
$begingroup$
@Invnto he actually gave the answer. Look more closely.
$endgroup$
– amitava
Mar 29 at 4:10
$begingroup$
yeah!! Now I got it !!Actually I haven't observed the solution properly!!
$endgroup$
– Invnto
Mar 29 at 4:19
add a comment |
$begingroup$
There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$
$endgroup$
$begingroup$
But I have no idea about the telescoping !!Can't be there some other simple ways!!
$endgroup$
– Invnto
Mar 29 at 4:06
1
$begingroup$
@Invnto he actually gave the answer. Look more closely.
$endgroup$
– amitava
Mar 29 at 4:10
$begingroup$
yeah!! Now I got it !!Actually I haven't observed the solution properly!!
$endgroup$
– Invnto
Mar 29 at 4:19
add a comment |
$begingroup$
There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$
$endgroup$
There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$
answered Mar 29 at 3:50
Lord Shark the UnknownLord Shark the Unknown
108k1162135
108k1162135
$begingroup$
But I have no idea about the telescoping !!Can't be there some other simple ways!!
$endgroup$
– Invnto
Mar 29 at 4:06
1
$begingroup$
@Invnto he actually gave the answer. Look more closely.
$endgroup$
– amitava
Mar 29 at 4:10
$begingroup$
yeah!! Now I got it !!Actually I haven't observed the solution properly!!
$endgroup$
– Invnto
Mar 29 at 4:19
add a comment |
$begingroup$
But I have no idea about the telescoping !!Can't be there some other simple ways!!
$endgroup$
– Invnto
Mar 29 at 4:06
1
$begingroup$
@Invnto he actually gave the answer. Look more closely.
$endgroup$
– amitava
Mar 29 at 4:10
$begingroup$
yeah!! Now I got it !!Actually I haven't observed the solution properly!!
$endgroup$
– Invnto
Mar 29 at 4:19
$begingroup$
But I have no idea about the telescoping !!Can't be there some other simple ways!!
$endgroup$
– Invnto
Mar 29 at 4:06
$begingroup$
But I have no idea about the telescoping !!Can't be there some other simple ways!!
$endgroup$
– Invnto
Mar 29 at 4:06
1
1
$begingroup$
@Invnto he actually gave the answer. Look more closely.
$endgroup$
– amitava
Mar 29 at 4:10
$begingroup$
@Invnto he actually gave the answer. Look more closely.
$endgroup$
– amitava
Mar 29 at 4:10
$begingroup$
yeah!! Now I got it !!Actually I haven't observed the solution properly!!
$endgroup$
– Invnto
Mar 29 at 4:19
$begingroup$
yeah!! Now I got it !!Actually I haven't observed the solution properly!!
$endgroup$
– Invnto
Mar 29 at 4:19
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign
$endgroup$
$begingroup$
Not sure this is the method intended for a high school competition :P
$endgroup$
– YiFan
Mar 31 at 2:57
$begingroup$
@YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
$endgroup$
– Felix Marin
Mar 31 at 3:01
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign
$endgroup$
$begingroup$
Not sure this is the method intended for a high school competition :P
$endgroup$
– YiFan
Mar 31 at 2:57
$begingroup$
@YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
$endgroup$
– Felix Marin
Mar 31 at 3:01
add a comment |
$begingroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign
$endgroup$
$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$
beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign
edited Mar 31 at 2:44
answered Mar 30 at 6:43
Felix MarinFelix Marin
68.8k7109146
68.8k7109146
$begingroup$
Not sure this is the method intended for a high school competition :P
$endgroup$
– YiFan
Mar 31 at 2:57
$begingroup$
@YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
$endgroup$
– Felix Marin
Mar 31 at 3:01
add a comment |
$begingroup$
Not sure this is the method intended for a high school competition :P
$endgroup$
– YiFan
Mar 31 at 2:57
$begingroup$
@YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
$endgroup$
– Felix Marin
Mar 31 at 3:01
$begingroup$
Not sure this is the method intended for a high school competition :P
$endgroup$
– YiFan
Mar 31 at 2:57
$begingroup$
Not sure this is the method intended for a high school competition :P
$endgroup$
– YiFan
Mar 31 at 2:57
$begingroup$
@YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
$endgroup$
– Felix Marin
Mar 31 at 3:01
$begingroup$
@YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
$endgroup$
– Felix Marin
Mar 31 at 3:01
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166717%2ffind-lim-n-rightarrow-infty-p-nwhreas-p-n-frac23-1231-cdot-frac%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/462082/…
$endgroup$
– lab bhattacharjee
Mar 29 at 3:45
$begingroup$
$displaystyle 2/3$ is the solution (explicitly).
$endgroup$
– Felix Marin
Mar 31 at 2:48