Find $lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.How to compute $prodlimits^infty_n=2 fracn^3-1n^3+1$$lim_n toinfty p_n = p$ implies $lim_n to inftyp_n^3 = p^3$Looking for fast text-booksHow to find $lim_n to infty int_0^1 cdots int_0^1 sqrtx_1+sqrtx_2+sqrtdots+sqrtx_ndx_1 dx_2dots dx_n$Find $lim_x rightarrow infty(fracxx^2+1cdot e^x)$Show that $lim_ntoinftyb_n=fracsqrtb^2-a^2arccosfracab$$lim_n rightarrow infty a_n = +infty, lim_n rightarrow infty b_n = +infty$ and $lim_n rightarrow infty(a_n + b_n ) = -infty$.Find $lim_nrightarrow inftyfrac(2n-1)!!(2n)!!.$Evaluate: $lim_xto 2fracx-2x^2-4$ without using L'Hôpital RuleEvaluate $lim_x to 0+ (e^1/sin x-e^(1/x))$Finding $lim_n rightarrow inftya_n$ given $lim_n rightarrow inftyfraca_n -1a_n + 1$

Is there a hemisphere-neutral way of specifying a season?

Infinite Abelian subgroup of infinite non Abelian group example

A reference to a well-known characterization of scattered compact spaces

Why is it a bad idea to hire a hitman to eliminate most corrupt politicians?

1960's book about a plague that kills all white people

Is it canonical bit space?

I would say: "You are another teacher", but she is a woman and I am a man

What about the virus in 12 Monkeys?

Facing a paradox: Earnshaw's theorem in one dimension

Why are electrically insulating heatsinks so rare? Is it just cost?

I Accidentally Deleted a Stock Terminal Theme

How do I write bicross product symbols in latex?

Western buddy movie with a supernatural twist where a woman turns into an eagle at the end

Is it possible to run Internet Explorer on OS X El Capitan?

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

How can I fix/modify my tub/shower combo so the water comes out of the showerhead?

In a spin, are both wings stalled?

Why is the 'in' operator throwing an error with a string literal instead of logging false?

Why does Arabsat 6A need a Falcon Heavy to launch

What does it mean to describe someone as a butt steak?

What to put in ESTA if staying in US for a few days before going on to Canada

How can I prevent hyper evolved versions of regular creatures from wiping out their cousins?

Is the Joker left-handed?

Assassin's bullet with mercury



Find $lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.


How to compute $prodlimits^infty_n=2 fracn^3-1n^3+1$$lim_n toinfty p_n = p$ implies $lim_n to inftyp_n^3 = p^3$Looking for fast text-booksHow to find $lim_n to infty int_0^1 cdots int_0^1 sqrtx_1+sqrtx_2+sqrtdots+sqrtx_ndx_1 dx_2dots dx_n$Find $lim_x rightarrow infty(fracxx^2+1cdot e^x)$Show that $lim_ntoinftyb_n=fracsqrtb^2-a^2arccosfracab$$lim_n rightarrow infty a_n = +infty, lim_n rightarrow infty b_n = +infty$ and $lim_n rightarrow infty(a_n + b_n ) = -infty$.Find $lim_nrightarrow inftyfrac(2n-1)!!(2n)!!.$Evaluate: $lim_xto 2fracx-2x^2-4$ without using L'Hôpital RuleEvaluate $lim_x to 0+ (e^1/sin x-e^(1/x))$Finding $lim_n rightarrow inftya_n$ given $lim_n rightarrow inftyfraca_n -1a_n + 1$













4












$begingroup$


$lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.



This is a past problem of a high-school level math compettion.



My tries:



1.Initially I thought of finding the product of the sequence.But then I realize there is no need of product coz' it'll make the function more complicated.



2.Then I tried to simplify first few terms so that may be in some way some of the middle terms may be cancelled out .



So the product of first few terms look sth like this,



$frac79cdotfrac2628cdotfrac6365cdotcdotfracn^3-1n^3+1$



But I could'nt find any pattern in this.So how the limit can be evaluated?










share|cite|improve this question









$endgroup$











  • $begingroup$
    math.stackexchange.com/questions/462082/…
    $endgroup$
    – lab bhattacharjee
    Mar 29 at 3:45










  • $begingroup$
    $displaystyle 2/3$ is the solution (explicitly).
    $endgroup$
    – Felix Marin
    Mar 31 at 2:48















4












$begingroup$


$lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.



This is a past problem of a high-school level math compettion.



My tries:



1.Initially I thought of finding the product of the sequence.But then I realize there is no need of product coz' it'll make the function more complicated.



2.Then I tried to simplify first few terms so that may be in some way some of the middle terms may be cancelled out .



So the product of first few terms look sth like this,



$frac79cdotfrac2628cdotfrac6365cdotcdotfracn^3-1n^3+1$



But I could'nt find any pattern in this.So how the limit can be evaluated?










share|cite|improve this question









$endgroup$











  • $begingroup$
    math.stackexchange.com/questions/462082/…
    $endgroup$
    – lab bhattacharjee
    Mar 29 at 3:45










  • $begingroup$
    $displaystyle 2/3$ is the solution (explicitly).
    $endgroup$
    – Felix Marin
    Mar 31 at 2:48













4












4








4


1



$begingroup$


$lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.



This is a past problem of a high-school level math compettion.



My tries:



1.Initially I thought of finding the product of the sequence.But then I realize there is no need of product coz' it'll make the function more complicated.



2.Then I tried to simplify first few terms so that may be in some way some of the middle terms may be cancelled out .



So the product of first few terms look sth like this,



$frac79cdotfrac2628cdotfrac6365cdotcdotfracn^3-1n^3+1$



But I could'nt find any pattern in this.So how the limit can be evaluated?










share|cite|improve this question









$endgroup$




$lim_n rightarrowinfty P_n$whreas $P_n=frac2^3-12^3+1cdotfrac3^3-13^3+1cdotcdotcdotfracn^3-1n^3+1$.



This is a past problem of a high-school level math compettion.



My tries:



1.Initially I thought of finding the product of the sequence.But then I realize there is no need of product coz' it'll make the function more complicated.



2.Then I tried to simplify first few terms so that may be in some way some of the middle terms may be cancelled out .



So the product of first few terms look sth like this,



$frac79cdotfrac2628cdotfrac6365cdotcdotfracn^3-1n^3+1$



But I could'nt find any pattern in this.So how the limit can be evaluated?







real-analysis limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 29 at 3:41









InvntoInvnto

727




727











  • $begingroup$
    math.stackexchange.com/questions/462082/…
    $endgroup$
    – lab bhattacharjee
    Mar 29 at 3:45










  • $begingroup$
    $displaystyle 2/3$ is the solution (explicitly).
    $endgroup$
    – Felix Marin
    Mar 31 at 2:48
















  • $begingroup$
    math.stackexchange.com/questions/462082/…
    $endgroup$
    – lab bhattacharjee
    Mar 29 at 3:45










  • $begingroup$
    $displaystyle 2/3$ is the solution (explicitly).
    $endgroup$
    – Felix Marin
    Mar 31 at 2:48















$begingroup$
math.stackexchange.com/questions/462082/…
$endgroup$
– lab bhattacharjee
Mar 29 at 3:45




$begingroup$
math.stackexchange.com/questions/462082/…
$endgroup$
– lab bhattacharjee
Mar 29 at 3:45












$begingroup$
$displaystyle 2/3$ is the solution (explicitly).
$endgroup$
– Felix Marin
Mar 31 at 2:48




$begingroup$
$displaystyle 2/3$ is the solution (explicitly).
$endgroup$
– Felix Marin
Mar 31 at 2:48










2 Answers
2






active

oldest

votes


















4












$begingroup$

There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    But I have no idea about the telescoping !!Can't be there some other simple ways!!
    $endgroup$
    – Invnto
    Mar 29 at 4:06






  • 1




    $begingroup$
    @Invnto he actually gave the answer. Look more closely.
    $endgroup$
    – amitava
    Mar 29 at 4:10










  • $begingroup$
    yeah!! Now I got it !!Actually I haven't observed the solution properly!!
    $endgroup$
    – Invnto
    Mar 29 at 4:19


















1












$begingroup$

$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$

beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Not sure this is the method intended for a high school competition :P
    $endgroup$
    – YiFan
    Mar 31 at 2:57










  • $begingroup$
    @YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
    $endgroup$
    – Felix Marin
    Mar 31 at 3:01












Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166717%2ffind-lim-n-rightarrow-infty-p-nwhreas-p-n-frac23-1231-cdot-frac%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    But I have no idea about the telescoping !!Can't be there some other simple ways!!
    $endgroup$
    – Invnto
    Mar 29 at 4:06






  • 1




    $begingroup$
    @Invnto he actually gave the answer. Look more closely.
    $endgroup$
    – amitava
    Mar 29 at 4:10










  • $begingroup$
    yeah!! Now I got it !!Actually I haven't observed the solution properly!!
    $endgroup$
    – Invnto
    Mar 29 at 4:19















4












$begingroup$

There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$






share|cite|improve this answer









$endgroup$












  • $begingroup$
    But I have no idea about the telescoping !!Can't be there some other simple ways!!
    $endgroup$
    – Invnto
    Mar 29 at 4:06






  • 1




    $begingroup$
    @Invnto he actually gave the answer. Look more closely.
    $endgroup$
    – amitava
    Mar 29 at 4:10










  • $begingroup$
    yeah!! Now I got it !!Actually I haven't observed the solution properly!!
    $endgroup$
    – Invnto
    Mar 29 at 4:19













4












4








4





$begingroup$

There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$






share|cite|improve this answer









$endgroup$



There's some telescoping going on here. We have
$$fracn^3-1n^3+1=fracn-1n+1fracn^2+n+1n^2-n+1.$$
Then
$$prod_n=2^Nfracn-1n+1=frac13frac24frac35frac46cdotsfracN-1N+2$$
and
$$prod_n=2^Nfracn^2+n+1n^2-n+1=frac73frac137frac2113frac3121cdotsfracN^2+N+1N^2-N+1.$$
Both these products telescope to give a closed form for
$$prod_n=2^Nfracn^3-1n^3+1.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 29 at 3:50









Lord Shark the UnknownLord Shark the Unknown

108k1162135




108k1162135











  • $begingroup$
    But I have no idea about the telescoping !!Can't be there some other simple ways!!
    $endgroup$
    – Invnto
    Mar 29 at 4:06






  • 1




    $begingroup$
    @Invnto he actually gave the answer. Look more closely.
    $endgroup$
    – amitava
    Mar 29 at 4:10










  • $begingroup$
    yeah!! Now I got it !!Actually I haven't observed the solution properly!!
    $endgroup$
    – Invnto
    Mar 29 at 4:19
















  • $begingroup$
    But I have no idea about the telescoping !!Can't be there some other simple ways!!
    $endgroup$
    – Invnto
    Mar 29 at 4:06






  • 1




    $begingroup$
    @Invnto he actually gave the answer. Look more closely.
    $endgroup$
    – amitava
    Mar 29 at 4:10










  • $begingroup$
    yeah!! Now I got it !!Actually I haven't observed the solution properly!!
    $endgroup$
    – Invnto
    Mar 29 at 4:19















$begingroup$
But I have no idea about the telescoping !!Can't be there some other simple ways!!
$endgroup$
– Invnto
Mar 29 at 4:06




$begingroup$
But I have no idea about the telescoping !!Can't be there some other simple ways!!
$endgroup$
– Invnto
Mar 29 at 4:06




1




1




$begingroup$
@Invnto he actually gave the answer. Look more closely.
$endgroup$
– amitava
Mar 29 at 4:10




$begingroup$
@Invnto he actually gave the answer. Look more closely.
$endgroup$
– amitava
Mar 29 at 4:10












$begingroup$
yeah!! Now I got it !!Actually I haven't observed the solution properly!!
$endgroup$
– Invnto
Mar 29 at 4:19




$begingroup$
yeah!! Now I got it !!Actually I haven't observed the solution properly!!
$endgroup$
– Invnto
Mar 29 at 4:19











1












$begingroup$

$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$

beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Not sure this is the method intended for a high school competition :P
    $endgroup$
    – YiFan
    Mar 31 at 2:57










  • $begingroup$
    @YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
    $endgroup$
    – Felix Marin
    Mar 31 at 3:01
















1












$begingroup$

$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$

beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Not sure this is the method intended for a high school competition :P
    $endgroup$
    – YiFan
    Mar 31 at 2:57










  • $begingroup$
    @YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
    $endgroup$
    – Felix Marin
    Mar 31 at 3:01














1












1








1





$begingroup$

$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$

beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign






share|cite|improve this answer











$endgroup$



$newcommandbbx[1],bbox[15px,border:1px groove navy]displaystyle#1,
newcommandbraces[1]leftlbrace,#1,rightrbrace
newcommandbracks[1]leftlbrack,#1,rightrbrack
newcommandddmathrmd
newcommandds[1]displaystyle#1
newcommandexpo[1],mathrme^#1,
newcommandicmathrmi
newcommandmc[1]mathcal#1
newcommandmrm[1]mathrm#1
newcommandpars[1]left(,#1,right)
newcommandpartiald[3][]fracpartial^#1 #2partial #3^#1
newcommandroot[2][],sqrt[#1],#2,,
newcommandtotald[3][]fracmathrmd^#1 #2mathrmd #3^#1
newcommandverts[1]leftvert,#1,rightvert$

beginalign
bbox[10px,#ffd]P_n & equiv
prod_k = 2^nk^3 - 1 over k^3 + 1 =
prod_k = 2^nparsk - 1parsk - expo2piic/3
parsk - expo-2piic/3 over
parsk + 1parsk - expopiic/3
parsk - expo-piic/3
\[5mm] & =
parsn - 1! over parsn + 1!/2prod_k = 2^nparsk - expo2piic/3
parsk - expo-2piic/3 over
parsk - expopiic/3parsk - expo-piic/3
\[5mm] & =
2 over parsn + 1nvertsprod_k = 2^n
parsk - expo2piic/3 over parsk - expopiic/3^2
\[5mm] & =
2 over nparsn + 1vertsprod_k = 2^n
parsk + 1/2 - root3ic/2 over
parsk - 1/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1
vertspars5/2 - root3ic/2^overlinen - 1 over
pars3/2 - root3ic/2^overlinen - 1^2
\[5mm] & =
2 over nparsn + 1
vertsGammaparsn + 3/2 - root3ic/2/Gammapars5/2 - root3ic/2 over
Gammaparsn + 1/2 - root3ic/2/Gammapars3/2 - root3ic/2^2
\[5mm] & =
2 over nparsn + 1,vertsGammapars3/2 - root3ic/2 over Gammapars5/2 - root3ic/2^2
vertsparsn + 1/2 - root3ic/2! over
parsn - 1/2 - root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2 over nparsn + 1
overbrace1 over verts3/2 - root3ic/2^2^ds= 1/3
times
\[2mm] &
vertsroot2piparsn + 1/2 - root3ic/2^n + 1 - root3ic/2 expo-n - 1/2 + root3ic/2 over
root2piparsn - 1/2 - root3ic/2^n - root3ic/2
expo-n + 1/2 + root3ic/2^2
\[8mm] & stackrelmrmas n to inftysim,,,
2/3 over nparsn + 1
vertsn^n + 1 - root3ic/2bracks1 + pars1/2 - root3ic/2/n^n expo- 1/2 + root3ic/2 over
n^n - root3ic/2bracks1 - pars1/2 + root3ic/2/n^n
expo1/2 + root3ic/2^2
\[5mm] & =
2/3 over nparsn + 1,n^2
,,,stackrelmrmas n to inftyLargeto,,,
bbx2 over 3
endalign







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Mar 31 at 2:44

























answered Mar 30 at 6:43









Felix MarinFelix Marin

68.8k7109146




68.8k7109146











  • $begingroup$
    Not sure this is the method intended for a high school competition :P
    $endgroup$
    – YiFan
    Mar 31 at 2:57










  • $begingroup$
    @YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
    $endgroup$
    – Felix Marin
    Mar 31 at 3:01

















  • $begingroup$
    Not sure this is the method intended for a high school competition :P
    $endgroup$
    – YiFan
    Mar 31 at 2:57










  • $begingroup$
    @YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
    $endgroup$
    – Felix Marin
    Mar 31 at 3:01
















$begingroup$
Not sure this is the method intended for a high school competition :P
$endgroup$
– YiFan
Mar 31 at 2:57




$begingroup$
Not sure this is the method intended for a high school competition :P
$endgroup$
– YiFan
Mar 31 at 2:57












$begingroup$
@YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
$endgroup$
– Felix Marin
Mar 31 at 3:01





$begingroup$
@YiFan Unfortunately, I agree with you. Anyway, it's an alternative. At least I show that the answer is $displaystyle 2/3$. Thanks.
$endgroup$
– Felix Marin
Mar 31 at 3:01


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3166717%2ffind-lim-n-rightarrow-infty-p-nwhreas-p-n-frac23-1231-cdot-frac%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε