Showing $sum_k geq 0 kA^k$ converges while $vert vert Avert vert < 1$ The Next CEO of Stack OverflowIf $sum_n geq 1X_n$ converges a.s. then $forall a > 0: sum P(|X_n|>a) < infty$Are there norms on $BbbC^m$ and $BbbC^n$ so that the norm $VertcdotVert$ is a subordinate norm?If $ sum_n=1^inftyx_na_n $ converges when $x_nto 0,$ then $ sum_n=1^inftya_n $ also converges.Prove that the series $displaystyle sum_n=1^infty a_n$ converges in $X$.Theorem 3.55 in Baby Rudin: Every re-arrangement of an absolutely convergent series converges to the same sum in every normed space?Theorem 3.22 in Baby Rudin: Is this proof correct?Hints on showing Cauchy sequence convergesIf $(2x_n+1-x_n)$ converges to $x$, then show that $(x_n)$ converges to $x$.If $leftVert ArightVert geq c$ then $left|lambdaright|>c$ for all eigenvalues of $A$Show directly that if $s_n$ is a Cauchy sequence then so is $$. Conclude that $$ converges whenever $s_n$ converges.

Can you teleport closer to a creature you are Frightened of?

(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?

Yu-Gi-Oh cards in Python 3

Is there a way to save my career from absolute disaster?

Purpose of level-shifter with same in and out voltages

Expressing the idea of having a very busy time

Why the last AS PATH item always is `I` or `?`?

What does "shotgun unity" refer to here in this sentence?

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

What happened in Rome, when the western empire "fell"?

Getting Stale Gas Out of a Gas Tank w/out Dropping the Tank

Is it correct to say moon starry nights?

Would a completely good Muggle be able to use a wand?

Computationally populating tables with probability data

Can someone explain this formula for calculating Manhattan distance?

Help/tips for a first time writer?

Physiological effects of huge anime eyes

Defamation due to breach of confidentiality

Aggressive Under-Indexing and no data for missing index

Is a distribution that is normal, but highly skewed, considered Gaussian?

Expectation in a stochastic differential equation

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

What CSS properties can the br tag have?

Is it okay to majorly distort historical facts while writing a fiction story?



Showing $sum_k geq 0 kA^k$ converges while $vert vert Avert vert



The Next CEO of Stack OverflowIf $sum_n geq 1X_n$ converges a.s. then $forall a > 0: sum P(|X_n|>a) < infty$Are there norms on $BbbC^m$ and $BbbC^n$ so that the norm $VertcdotVert$ is a subordinate norm?If $ sum_n=1^inftyx_na_n $ converges when $x_nto 0,$ then $ sum_n=1^inftya_n $ also converges.Prove that the series $displaystyle sum_n=1^infty a_n$ converges in $X$.Theorem 3.55 in Baby Rudin: Every re-arrangement of an absolutely convergent series converges to the same sum in every normed space?Theorem 3.22 in Baby Rudin: Is this proof correct?Hints on showing Cauchy sequence convergesIf $(2x_n+1-x_n)$ converges to $x$, then show that $(x_n)$ converges to $x$.If $leftVert ArightVert geq c$ then $left|lambdaright|>c$ for all eigenvalues of $A$Show directly that if $s_n$ is a Cauchy sequence then so is $$. Conclude that $$ converges whenever $s_n$ converges.










0












$begingroup$


Let $vert vert cdot vert vert$ be a matrix norm on $A$ where $vert vert Avert vert < 1$. Show that $sum_k geq 0 k A^k$ converges.



My ideas: Let $m<l$



$1.$ Let $vertvertsum_k=0^lkA^k-sum_k=0^mkA^kvertvert=vertvertsum_k=m+1^lkA^kvertvertleq sum_k=m+1^lvertvert kA^kvertvert=sum_k=m+1^lvert kvert vert vert A^kvertvertleq sum_k=m+1^lvert kvert vert vert Avertvert^k$



If I can remove $vert k vert$ then I am can show that it is a cauchy sequence and subsequently a convergent sequence.



other ideas: Am I allowed to simply take the derivative of $sum_k geq 0 k A^k$, but how would I then be able to compare $sum_k geq 0 k A^k$ and $sum_k geq 0 A^k$? Looking for tips.










share|cite|improve this question









$endgroup$
















    0












    $begingroup$


    Let $vert vert cdot vert vert$ be a matrix norm on $A$ where $vert vert Avert vert < 1$. Show that $sum_k geq 0 k A^k$ converges.



    My ideas: Let $m<l$



    $1.$ Let $vertvertsum_k=0^lkA^k-sum_k=0^mkA^kvertvert=vertvertsum_k=m+1^lkA^kvertvertleq sum_k=m+1^lvertvert kA^kvertvert=sum_k=m+1^lvert kvert vert vert A^kvertvertleq sum_k=m+1^lvert kvert vert vert Avertvert^k$



    If I can remove $vert k vert$ then I am can show that it is a cauchy sequence and subsequently a convergent sequence.



    other ideas: Am I allowed to simply take the derivative of $sum_k geq 0 k A^k$, but how would I then be able to compare $sum_k geq 0 k A^k$ and $sum_k geq 0 A^k$? Looking for tips.










    share|cite|improve this question









    $endgroup$














      0












      0








      0





      $begingroup$


      Let $vert vert cdot vert vert$ be a matrix norm on $A$ where $vert vert Avert vert < 1$. Show that $sum_k geq 0 k A^k$ converges.



      My ideas: Let $m<l$



      $1.$ Let $vertvertsum_k=0^lkA^k-sum_k=0^mkA^kvertvert=vertvertsum_k=m+1^lkA^kvertvertleq sum_k=m+1^lvertvert kA^kvertvert=sum_k=m+1^lvert kvert vert vert A^kvertvertleq sum_k=m+1^lvert kvert vert vert Avertvert^k$



      If I can remove $vert k vert$ then I am can show that it is a cauchy sequence and subsequently a convergent sequence.



      other ideas: Am I allowed to simply take the derivative of $sum_k geq 0 k A^k$, but how would I then be able to compare $sum_k geq 0 k A^k$ and $sum_k geq 0 A^k$? Looking for tips.










      share|cite|improve this question









      $endgroup$




      Let $vert vert cdot vert vert$ be a matrix norm on $A$ where $vert vert Avert vert < 1$. Show that $sum_k geq 0 k A^k$ converges.



      My ideas: Let $m<l$



      $1.$ Let $vertvertsum_k=0^lkA^k-sum_k=0^mkA^kvertvert=vertvertsum_k=m+1^lkA^kvertvertleq sum_k=m+1^lvertvert kA^kvertvert=sum_k=m+1^lvert kvert vert vert A^kvertvertleq sum_k=m+1^lvert kvert vert vert Avertvert^k$



      If I can remove $vert k vert$ then I am can show that it is a cauchy sequence and subsequently a convergent sequence.



      other ideas: Am I allowed to simply take the derivative of $sum_k geq 0 k A^k$, but how would I then be able to compare $sum_k geq 0 k A^k$ and $sum_k geq 0 A^k$? Looking for tips.







      matrices convergence optimization






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Mar 18 at 19:53









      SABOYSABOY

      612311




      612311




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You could do it like this:



          1. $sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)


          2. $sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$


          3. If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153234%2fshowing-sum-k-geq-0-kak-converges-while-vert-vert-a-vert-vert-1%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            You could do it like this:



            1. $sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)


            2. $sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$


            3. If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges






            share|cite|improve this answer











            $endgroup$

















              1












              $begingroup$

              You could do it like this:



              1. $sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)


              2. $sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$


              3. If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges






              share|cite|improve this answer











              $endgroup$















                1












                1








                1





                $begingroup$

                You could do it like this:



                1. $sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)


                2. $sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$


                3. If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges






                share|cite|improve this answer











                $endgroup$



                You could do it like this:



                1. $sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)


                2. $sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$


                3. If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Mar 28 at 1:01

























                answered Mar 18 at 20:08









                triitrii

                81817




                81817



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153234%2fshowing-sum-k-geq-0-kak-converges-while-vert-vert-a-vert-vert-1%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                    Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε