Showing $sum_k geq 0 kA^k$ converges while $vert vert Avert vert < 1$ The Next CEO of Stack OverflowIf $sum_n geq 1X_n$ converges a.s. then $forall a > 0: sum P(|X_n|>a) < infty$Are there norms on $BbbC^m$ and $BbbC^n$ so that the norm $VertcdotVert$ is a subordinate norm?If $ sum_n=1^inftyx_na_n $ converges when $x_nto 0,$ then $ sum_n=1^inftya_n $ also converges.Prove that the series $displaystyle sum_n=1^infty a_n$ converges in $X$.Theorem 3.55 in Baby Rudin: Every re-arrangement of an absolutely convergent series converges to the same sum in every normed space?Theorem 3.22 in Baby Rudin: Is this proof correct?Hints on showing Cauchy sequence convergesIf $(2x_n+1-x_n)$ converges to $x$, then show that $(x_n)$ converges to $x$.If $leftVert ArightVert geq c$ then $left|lambdaright|>c$ for all eigenvalues of $A$Show directly that if $s_n$ is a Cauchy sequence then so is $$. Conclude that $$ converges whenever $s_n$ converges.
Can you teleport closer to a creature you are Frightened of?
(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?
Yu-Gi-Oh cards in Python 3
Is there a way to save my career from absolute disaster?
Purpose of level-shifter with same in and out voltages
Expressing the idea of having a very busy time
Why the last AS PATH item always is `I` or `?`?
What does "shotgun unity" refer to here in this sentence?
Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico
What happened in Rome, when the western empire "fell"?
Getting Stale Gas Out of a Gas Tank w/out Dropping the Tank
Is it correct to say moon starry nights?
Would a completely good Muggle be able to use a wand?
Computationally populating tables with probability data
Can someone explain this formula for calculating Manhattan distance?
Help/tips for a first time writer?
Physiological effects of huge anime eyes
Defamation due to breach of confidentiality
Aggressive Under-Indexing and no data for missing index
Is a distribution that is normal, but highly skewed, considered Gaussian?
Expectation in a stochastic differential equation
If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?
What CSS properties can the br tag have?
Is it okay to majorly distort historical facts while writing a fiction story?
Showing $sum_k geq 0 kA^k$ converges while $vert vert Avert vert
The Next CEO of Stack OverflowIf $sum_n geq 1X_n$ converges a.s. then $forall a > 0: sum P(|X_n|>a) < infty$Are there norms on $BbbC^m$ and $BbbC^n$ so that the norm $VertcdotVert$ is a subordinate norm?If $ sum_n=1^inftyx_na_n $ converges when $x_nto 0,$ then $ sum_n=1^inftya_n $ also converges.Prove that the series $displaystyle sum_n=1^infty a_n$ converges in $X$.Theorem 3.55 in Baby Rudin: Every re-arrangement of an absolutely convergent series converges to the same sum in every normed space?Theorem 3.22 in Baby Rudin: Is this proof correct?Hints on showing Cauchy sequence convergesIf $(2x_n+1-x_n)$ converges to $x$, then show that $(x_n)$ converges to $x$.If $leftVert ArightVert geq c$ then $left|lambdaright|>c$ for all eigenvalues of $A$Show directly that if $s_n$ is a Cauchy sequence then so is $$. Conclude that $$ converges whenever $s_n$ converges.
$begingroup$
Let $vert vert cdot vert vert$ be a matrix norm on $A$ where $vert vert Avert vert < 1$. Show that $sum_k geq 0 k A^k$ converges.
My ideas: Let $m<l$
$1.$ Let $vertvertsum_k=0^lkA^k-sum_k=0^mkA^kvertvert=vertvertsum_k=m+1^lkA^kvertvertleq sum_k=m+1^lvertvert kA^kvertvert=sum_k=m+1^lvert kvert vert vert A^kvertvertleq sum_k=m+1^lvert kvert vert vert Avertvert^k$
If I can remove $vert k vert$ then I am can show that it is a cauchy sequence and subsequently a convergent sequence.
other ideas: Am I allowed to simply take the derivative of $sum_k geq 0 k A^k$, but how would I then be able to compare $sum_k geq 0 k A^k$ and $sum_k geq 0 A^k$? Looking for tips.
matrices convergence optimization
$endgroup$
add a comment |
$begingroup$
Let $vert vert cdot vert vert$ be a matrix norm on $A$ where $vert vert Avert vert < 1$. Show that $sum_k geq 0 k A^k$ converges.
My ideas: Let $m<l$
$1.$ Let $vertvertsum_k=0^lkA^k-sum_k=0^mkA^kvertvert=vertvertsum_k=m+1^lkA^kvertvertleq sum_k=m+1^lvertvert kA^kvertvert=sum_k=m+1^lvert kvert vert vert A^kvertvertleq sum_k=m+1^lvert kvert vert vert Avertvert^k$
If I can remove $vert k vert$ then I am can show that it is a cauchy sequence and subsequently a convergent sequence.
other ideas: Am I allowed to simply take the derivative of $sum_k geq 0 k A^k$, but how would I then be able to compare $sum_k geq 0 k A^k$ and $sum_k geq 0 A^k$? Looking for tips.
matrices convergence optimization
$endgroup$
add a comment |
$begingroup$
Let $vert vert cdot vert vert$ be a matrix norm on $A$ where $vert vert Avert vert < 1$. Show that $sum_k geq 0 k A^k$ converges.
My ideas: Let $m<l$
$1.$ Let $vertvertsum_k=0^lkA^k-sum_k=0^mkA^kvertvert=vertvertsum_k=m+1^lkA^kvertvertleq sum_k=m+1^lvertvert kA^kvertvert=sum_k=m+1^lvert kvert vert vert A^kvertvertleq sum_k=m+1^lvert kvert vert vert Avertvert^k$
If I can remove $vert k vert$ then I am can show that it is a cauchy sequence and subsequently a convergent sequence.
other ideas: Am I allowed to simply take the derivative of $sum_k geq 0 k A^k$, but how would I then be able to compare $sum_k geq 0 k A^k$ and $sum_k geq 0 A^k$? Looking for tips.
matrices convergence optimization
$endgroup$
Let $vert vert cdot vert vert$ be a matrix norm on $A$ where $vert vert Avert vert < 1$. Show that $sum_k geq 0 k A^k$ converges.
My ideas: Let $m<l$
$1.$ Let $vertvertsum_k=0^lkA^k-sum_k=0^mkA^kvertvert=vertvertsum_k=m+1^lkA^kvertvertleq sum_k=m+1^lvertvert kA^kvertvert=sum_k=m+1^lvert kvert vert vert A^kvertvertleq sum_k=m+1^lvert kvert vert vert Avertvert^k$
If I can remove $vert k vert$ then I am can show that it is a cauchy sequence and subsequently a convergent sequence.
other ideas: Am I allowed to simply take the derivative of $sum_k geq 0 k A^k$, but how would I then be able to compare $sum_k geq 0 k A^k$ and $sum_k geq 0 A^k$? Looking for tips.
matrices convergence optimization
matrices convergence optimization
asked Mar 18 at 19:53
SABOYSABOY
612311
612311
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You could do it like this:
$sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)
$sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$
If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153234%2fshowing-sum-k-geq-0-kak-converges-while-vert-vert-a-vert-vert-1%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You could do it like this:
$sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)
$sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$
If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges
$endgroup$
add a comment |
$begingroup$
You could do it like this:
$sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)
$sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$
If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges
$endgroup$
add a comment |
$begingroup$
You could do it like this:
$sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)
$sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$
If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges
$endgroup$
You could do it like this:
$sum_k=0^infty kcdot q^k$ converges for every $q$ with $qin(-1,1)$ (Ratio test)
$sum_k=0^infty|kA^k|leqsum_k=0^infty kcdot |A|^k<infty$
If $(x_k)$ is a sequence in a Banach space with $sum_k=0^infty|x_k|<infty$ then $sum_k=0^infty x_k$ converges
edited Mar 28 at 1:01
answered Mar 18 at 20:08
triitrii
81817
81817
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3153234%2fshowing-sum-k-geq-0-kak-converges-while-vert-vert-a-vert-vert-1%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown