Skip to main content

253 nî Bo̍k-lo̍k Sū-kiāⁿ | Chhut-sì | Kòe-sin | Siong-koan | Sûn-lám me-niú

253 nî250 nî-tāi


Wikimedia Commons253 nî












253 nî




Wikipedia (chū-iû ê pek-kho-choân-su) beh kā lí kóng...






跳至導覽
跳至搜尋









Sè-kí:

2 sè-kí · 3 sè-kí · 4 sè-kí

Nî-tāi:

230 nî-tāi 240 nî-tāi · 250 nî-tāi · 260 nî-tāi 270 nî-tāi

Nî:

248 249 250 251 252 · 253 nî · 254 255 256 257 258


Bo̍k-lo̍k





  • 1 Sū-kiāⁿ

    • 1.1 Bô ji̍t-kî



  • 2 Chhut-sì


  • 3 Kòe-sin

    • 3.1 Bô ji̍t-kî



  • 4 Siong-koan




Sū-kiāⁿ |



Bô ji̍t-kî |



  • Sasan Tè-kok kap Lô-má Tè-kok phah Barbalissos Chiàn-tò͘.


Chhut-sì |



Kòe-sin |



  • 6 goe̍h: Kàu-hông Cornelius, Thian-chú-kàu sîn-hū. Kàu-hông.


  • 8 goe̍h: Trebonianus Gallus, Kó͘-tāi Lô-má chèng-tī-chiá. Lô-má Hông-tè. 206 nî chhut-sì.


  • 8 goe̍h: Volusianus, chèng-tī-chiá. Lô-má Hông-tè.


Bô ji̍t-kî |



  • Aemilianus, chèng-tī-chiá. Lô-má Hông-tè. 207 nî chhut-sì.


Siong-koan |







Tī Wikimedia Commons téng ê siong-koan tóng-àn: 253 nî





Lâi-goân: "https://zh-min-nan.wikipedia.org/w/index.php?title=253_nî&oldid=1870556"










Sûn-lám me-niú



























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.020","walltime":"0.032","ppvisitednodes":"value":130,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":1488,"limit":2097152,"templateargumentsize":"value":113,"limit":2097152,"expansiondepth":"value":4,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":2,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 9.385 1 -total"," 59.86% 5.618 1 Pang-bô͘:Commons_category"," 38.71% 3.633 1 Pang-bô͘:Yearbox"," 26.67% 2.503 1 Pang-bô͘:Commons"],"cachereport":"origin":"mw1252","timestamp":"20190303151505","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":184,"wgHostname":"mw1262"););

Popular posts from this blog

Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε