Challenging definite integral of hypergeometric functions The Next CEO of Stack OverflowSymbolic Integration involving hypergeometric functionsClosed form for integral of inverse hyperbolic function in terms of $_4F_3$Definite integral of arcsine over square-root of quadraticSimplifying real part of hypergeometric function with complex parametersEvaluating a certain integral which generalizes the $_3F_2$ hypergeometric functionWhat is $_3F_2left(1,frac32,2; frac43,frac53; frac427right)$ as an integral?Definite integral of Hypergeometric function 2F1Integral involving the Gauss Hypergeometric functions with quadratic argumentRewriting Appell's Hypergeometric Function $F_1$ in terms of Gauss' Hypergeometric Function $_2F_1$Definite integral of a hypergeometric function

Strange use of "whether ... than ..." in official text

Aggressive Under-Indexing and no data for missing index

Point distance program written without a framework

Is it OK to decorate a log book cover?

Yu-Gi-Oh cards in Python 3

Is there a difference between "Fahrstuhl" and "Aufzug"?

Expressing the idea of having a very busy time

How do I fit a non linear curve?

Why is the US ranked as #45 in Press Freedom ratings, despite its extremely permissive free speech laws?

How to avoid supervisors with prejudiced views?

Cannot shrink btrfs filesystem although there is still data and metadata space left : ERROR: unable to resize '/home': No space left on device

Ising model simulation

Are the names of these months realistic?

Vector calculus integration identity problem

Why is information "lost" when it got into a black hole?

What is the process for purifying your home if you believe it may have been previously used for pagan worship?

How to use ReplaceAll on an expression that contains a rule

Free fall ellipse or parabola?

Is it ever safe to open a suspicious HTML file (e.g. email attachment)?

Calculate the Mean mean of two numbers

Do scriptures give a method to recognize a truly self-realized person/jivanmukta?

IC has pull-down resistors on SMBus lines?

If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?

Help! I cannot understand this game’s notations!



Challenging definite integral of hypergeometric functions



The Next CEO of Stack OverflowSymbolic Integration involving hypergeometric functionsClosed form for integral of inverse hyperbolic function in terms of $_4F_3$Definite integral of arcsine over square-root of quadraticSimplifying real part of hypergeometric function with complex parametersEvaluating a certain integral which generalizes the $_3F_2$ hypergeometric functionWhat is $_3F_2left(1,frac32,2; frac43,frac53; frac427right)$ as an integral?Definite integral of Hypergeometric function 2F1Integral involving the Gauss Hypergeometric functions with quadratic argumentRewriting Appell's Hypergeometric Function $F_1$ in terms of Gauss' Hypergeometric Function $_2F_1$Definite integral of a hypergeometric function










7












$begingroup$


Given $ellinmathbbNlandleft(m,nright)inmathbbZ_ge0^2landleft(a,b,cright)inmathbbR^3land0<a<b<1land0<c<1$, define the function $mathcalJ_ell,m,nleft(a,b,cright)$ via the definite integral



$$smallmathcalJ_ell,m,nleft(a,b,cright):=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright),_2F_1left(frac12,n+frac12;n+frac32;cleft(1-tright)right).$$



The Gauss hypergeometric function $_2F_1$ may be defined via the infinite series



$$_2F_1left(alpha,beta;gamma;zright):=sum_n=0^inftyfracleft(alpharight)_n,left(betaright)_nleft(gammaright)_ncdotfracz^nn!;~~~smallleft.$$




Question: Does the integral above possess a closed form representation in terms of hypergeometric (or simpler) functions?





Possible starting point: Lacking any obvious way to evaluate this integral, one strategy that came to mind was to expand the integral as a multiple infinite series, which could then be converted into some hypergeometric representation (assuming such exists). As you can see below, things get messy, and it's hard to tell if any headway is being made.



Let $ellinmathbbNlandleft(m,nright)inmathbbZ_ge0^2landleft(a,b,cright)inmathbbR^3land0<a<b<1land0<c<1$. We find



$$beginalign
mathcalJ_ell,m,nleft(a,b,cright)
&=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
&~~~~~times,_2F_1left(frac12,n+frac12;n+frac32;cleft(1-tright)right)\
&=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
&~~~~~timessum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!left(1-tright)^k\
&=smallsum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n+k-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
&=smallsum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!int_0^1mathrmdt,sum_j=0^inftybinomj+ell-1ja^jt^m+j-frac12left(1-tright)^ell+n+k-frac12\
&~~~~~times,_2F_1left(frac12,m+frac12;m+frac32;btright)\
&=sum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!sum_j=0^inftybinomj+ell-1ja^j\
&~~~~~timesint_0^1mathrmdt,t^m+j-frac12left(1-tright)^ell+n+k-frac12,_2F_1left(frac12,m+frac12;m+frac32;btright)\
&=sum_j=0^inftysum_k=0^inftyfracbinomj+ell-1jleft(frac12right)_k,left(n+frac12right)_k,a^j,c^kleft(n+frac32right)_k,k!,operatornameBleft(frac12+m+j,frac12+ell+n+kright)\
&~~~~~times,_3F_2left(frac12,frac12+m,frac12+m+j;frac32+m,1+ell+m+n+j+k;bright)\
&=sum_j=0^inftysum_k=0^inftyfracbinomj+ell-1jleft(frac12right)_k,left(n+frac12right)_k,a^j,c^kleft(n+frac32right)_k,k!,operatornameBleft(frac12+m+j,frac12+ell+n+kright)\
&~~~~~timessum_p=0^inftyfracleft(frac12right)_p,left(frac12+mright)_p,left(frac12+m+jright)_p,b^pleft(frac32+mright)_p,left(1+ell+m+n+j+kright)_p,p!.\
endalign$$



Does anybody have any ideas for finishing the derivation, or another approach entirely? This is a difficult and time-consuming problem, but also one that I'm quite eager to crack. Any help would be greatly appreciated!










share|cite|improve this question











$endgroup$
















    7












    $begingroup$


    Given $ellinmathbbNlandleft(m,nright)inmathbbZ_ge0^2landleft(a,b,cright)inmathbbR^3land0<a<b<1land0<c<1$, define the function $mathcalJ_ell,m,nleft(a,b,cright)$ via the definite integral



    $$smallmathcalJ_ell,m,nleft(a,b,cright):=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright),_2F_1left(frac12,n+frac12;n+frac32;cleft(1-tright)right).$$



    The Gauss hypergeometric function $_2F_1$ may be defined via the infinite series



    $$_2F_1left(alpha,beta;gamma;zright):=sum_n=0^inftyfracleft(alpharight)_n,left(betaright)_nleft(gammaright)_ncdotfracz^nn!;~~~smallleft.$$




    Question: Does the integral above possess a closed form representation in terms of hypergeometric (or simpler) functions?





    Possible starting point: Lacking any obvious way to evaluate this integral, one strategy that came to mind was to expand the integral as a multiple infinite series, which could then be converted into some hypergeometric representation (assuming such exists). As you can see below, things get messy, and it's hard to tell if any headway is being made.



    Let $ellinmathbbNlandleft(m,nright)inmathbbZ_ge0^2landleft(a,b,cright)inmathbbR^3land0<a<b<1land0<c<1$. We find



    $$beginalign
    mathcalJ_ell,m,nleft(a,b,cright)
    &=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
    &~~~~~times,_2F_1left(frac12,n+frac12;n+frac32;cleft(1-tright)right)\
    &=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
    &~~~~~timessum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!left(1-tright)^k\
    &=smallsum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n+k-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
    &=smallsum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!int_0^1mathrmdt,sum_j=0^inftybinomj+ell-1ja^jt^m+j-frac12left(1-tright)^ell+n+k-frac12\
    &~~~~~times,_2F_1left(frac12,m+frac12;m+frac32;btright)\
    &=sum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!sum_j=0^inftybinomj+ell-1ja^j\
    &~~~~~timesint_0^1mathrmdt,t^m+j-frac12left(1-tright)^ell+n+k-frac12,_2F_1left(frac12,m+frac12;m+frac32;btright)\
    &=sum_j=0^inftysum_k=0^inftyfracbinomj+ell-1jleft(frac12right)_k,left(n+frac12right)_k,a^j,c^kleft(n+frac32right)_k,k!,operatornameBleft(frac12+m+j,frac12+ell+n+kright)\
    &~~~~~times,_3F_2left(frac12,frac12+m,frac12+m+j;frac32+m,1+ell+m+n+j+k;bright)\
    &=sum_j=0^inftysum_k=0^inftyfracbinomj+ell-1jleft(frac12right)_k,left(n+frac12right)_k,a^j,c^kleft(n+frac32right)_k,k!,operatornameBleft(frac12+m+j,frac12+ell+n+kright)\
    &~~~~~timessum_p=0^inftyfracleft(frac12right)_p,left(frac12+mright)_p,left(frac12+m+jright)_p,b^pleft(frac32+mright)_p,left(1+ell+m+n+j+kright)_p,p!.\
    endalign$$



    Does anybody have any ideas for finishing the derivation, or another approach entirely? This is a difficult and time-consuming problem, but also one that I'm quite eager to crack. Any help would be greatly appreciated!










    share|cite|improve this question











    $endgroup$














      7












      7








      7


      4



      $begingroup$


      Given $ellinmathbbNlandleft(m,nright)inmathbbZ_ge0^2landleft(a,b,cright)inmathbbR^3land0<a<b<1land0<c<1$, define the function $mathcalJ_ell,m,nleft(a,b,cright)$ via the definite integral



      $$smallmathcalJ_ell,m,nleft(a,b,cright):=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright),_2F_1left(frac12,n+frac12;n+frac32;cleft(1-tright)right).$$



      The Gauss hypergeometric function $_2F_1$ may be defined via the infinite series



      $$_2F_1left(alpha,beta;gamma;zright):=sum_n=0^inftyfracleft(alpharight)_n,left(betaright)_nleft(gammaright)_ncdotfracz^nn!;~~~smallleft.$$




      Question: Does the integral above possess a closed form representation in terms of hypergeometric (or simpler) functions?





      Possible starting point: Lacking any obvious way to evaluate this integral, one strategy that came to mind was to expand the integral as a multiple infinite series, which could then be converted into some hypergeometric representation (assuming such exists). As you can see below, things get messy, and it's hard to tell if any headway is being made.



      Let $ellinmathbbNlandleft(m,nright)inmathbbZ_ge0^2landleft(a,b,cright)inmathbbR^3land0<a<b<1land0<c<1$. We find



      $$beginalign
      mathcalJ_ell,m,nleft(a,b,cright)
      &=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &~~~~~times,_2F_1left(frac12,n+frac12;n+frac32;cleft(1-tright)right)\
      &=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &~~~~~timessum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!left(1-tright)^k\
      &=smallsum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n+k-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &=smallsum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!int_0^1mathrmdt,sum_j=0^inftybinomj+ell-1ja^jt^m+j-frac12left(1-tright)^ell+n+k-frac12\
      &~~~~~times,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &=sum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!sum_j=0^inftybinomj+ell-1ja^j\
      &~~~~~timesint_0^1mathrmdt,t^m+j-frac12left(1-tright)^ell+n+k-frac12,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &=sum_j=0^inftysum_k=0^inftyfracbinomj+ell-1jleft(frac12right)_k,left(n+frac12right)_k,a^j,c^kleft(n+frac32right)_k,k!,operatornameBleft(frac12+m+j,frac12+ell+n+kright)\
      &~~~~~times,_3F_2left(frac12,frac12+m,frac12+m+j;frac32+m,1+ell+m+n+j+k;bright)\
      &=sum_j=0^inftysum_k=0^inftyfracbinomj+ell-1jleft(frac12right)_k,left(n+frac12right)_k,a^j,c^kleft(n+frac32right)_k,k!,operatornameBleft(frac12+m+j,frac12+ell+n+kright)\
      &~~~~~timessum_p=0^inftyfracleft(frac12right)_p,left(frac12+mright)_p,left(frac12+m+jright)_p,b^pleft(frac32+mright)_p,left(1+ell+m+n+j+kright)_p,p!.\
      endalign$$



      Does anybody have any ideas for finishing the derivation, or another approach entirely? This is a difficult and time-consuming problem, but also one that I'm quite eager to crack. Any help would be greatly appreciated!










      share|cite|improve this question











      $endgroup$




      Given $ellinmathbbNlandleft(m,nright)inmathbbZ_ge0^2landleft(a,b,cright)inmathbbR^3land0<a<b<1land0<c<1$, define the function $mathcalJ_ell,m,nleft(a,b,cright)$ via the definite integral



      $$smallmathcalJ_ell,m,nleft(a,b,cright):=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright),_2F_1left(frac12,n+frac12;n+frac32;cleft(1-tright)right).$$



      The Gauss hypergeometric function $_2F_1$ may be defined via the infinite series



      $$_2F_1left(alpha,beta;gamma;zright):=sum_n=0^inftyfracleft(alpharight)_n,left(betaright)_nleft(gammaright)_ncdotfracz^nn!;~~~smallleft.$$




      Question: Does the integral above possess a closed form representation in terms of hypergeometric (or simpler) functions?





      Possible starting point: Lacking any obvious way to evaluate this integral, one strategy that came to mind was to expand the integral as a multiple infinite series, which could then be converted into some hypergeometric representation (assuming such exists). As you can see below, things get messy, and it's hard to tell if any headway is being made.



      Let $ellinmathbbNlandleft(m,nright)inmathbbZ_ge0^2landleft(a,b,cright)inmathbbR^3land0<a<b<1land0<c<1$. We find



      $$beginalign
      mathcalJ_ell,m,nleft(a,b,cright)
      &=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &~~~~~times,_2F_1left(frac12,n+frac12;n+frac32;cleft(1-tright)right)\
      &=int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &~~~~~timessum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!left(1-tright)^k\
      &=smallsum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!int_0^1mathrmdt,fract^m-frac12left(1-tright)^ell+n+k-frac12left(1-atright)^ell,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &=smallsum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!int_0^1mathrmdt,sum_j=0^inftybinomj+ell-1ja^jt^m+j-frac12left(1-tright)^ell+n+k-frac12\
      &~~~~~times,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &=sum_k=0^inftyfracleft(frac12right)_k,left(n+frac12right)_k,c^kleft(n+frac32right)_k,k!sum_j=0^inftybinomj+ell-1ja^j\
      &~~~~~timesint_0^1mathrmdt,t^m+j-frac12left(1-tright)^ell+n+k-frac12,_2F_1left(frac12,m+frac12;m+frac32;btright)\
      &=sum_j=0^inftysum_k=0^inftyfracbinomj+ell-1jleft(frac12right)_k,left(n+frac12right)_k,a^j,c^kleft(n+frac32right)_k,k!,operatornameBleft(frac12+m+j,frac12+ell+n+kright)\
      &~~~~~times,_3F_2left(frac12,frac12+m,frac12+m+j;frac32+m,1+ell+m+n+j+k;bright)\
      &=sum_j=0^inftysum_k=0^inftyfracbinomj+ell-1jleft(frac12right)_k,left(n+frac12right)_k,a^j,c^kleft(n+frac32right)_k,k!,operatornameBleft(frac12+m+j,frac12+ell+n+kright)\
      &~~~~~timessum_p=0^inftyfracleft(frac12right)_p,left(frac12+mright)_p,left(frac12+m+jright)_p,b^pleft(frac32+mright)_p,left(1+ell+m+n+j+kright)_p,p!.\
      endalign$$



      Does anybody have any ideas for finishing the derivation, or another approach entirely? This is a difficult and time-consuming problem, but also one that I'm quite eager to crack. Any help would be greatly appreciated!







      integration definite-integrals special-functions closed-form hypergeometric-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 28 at 3:40









      clathratus

      5,0361438




      5,0361438










      asked Aug 12 '16 at 17:20









      David HDavid H

      21.7k24693




      21.7k24693




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          For $m,ninmathbb Z_ge0$ the integrand can be rewritten in terms of elementary functions using that
          $$z^m-frac12_2F_1left(frac12,m+frac12;m+frac32;zright)=fracleft(frac12right)_m+1m!left[frac2arcsinsqrt zz-sqrt1-zcdotsum_k=1^mfrac(k-1)!,z^k-frac32left(frac12right)_kright].$$
          The initial integral therefore breaks down into finite number of pieces of 3 different types - however, neither of them looks computable.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1890376%2fchallenging-definite-integral-of-hypergeometric-functions%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            For $m,ninmathbb Z_ge0$ the integrand can be rewritten in terms of elementary functions using that
            $$z^m-frac12_2F_1left(frac12,m+frac12;m+frac32;zright)=fracleft(frac12right)_m+1m!left[frac2arcsinsqrt zz-sqrt1-zcdotsum_k=1^mfrac(k-1)!,z^k-frac32left(frac12right)_kright].$$
            The initial integral therefore breaks down into finite number of pieces of 3 different types - however, neither of them looks computable.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              For $m,ninmathbb Z_ge0$ the integrand can be rewritten in terms of elementary functions using that
              $$z^m-frac12_2F_1left(frac12,m+frac12;m+frac32;zright)=fracleft(frac12right)_m+1m!left[frac2arcsinsqrt zz-sqrt1-zcdotsum_k=1^mfrac(k-1)!,z^k-frac32left(frac12right)_kright].$$
              The initial integral therefore breaks down into finite number of pieces of 3 different types - however, neither of them looks computable.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                For $m,ninmathbb Z_ge0$ the integrand can be rewritten in terms of elementary functions using that
                $$z^m-frac12_2F_1left(frac12,m+frac12;m+frac32;zright)=fracleft(frac12right)_m+1m!left[frac2arcsinsqrt zz-sqrt1-zcdotsum_k=1^mfrac(k-1)!,z^k-frac32left(frac12right)_kright].$$
                The initial integral therefore breaks down into finite number of pieces of 3 different types - however, neither of them looks computable.






                share|cite|improve this answer









                $endgroup$



                For $m,ninmathbb Z_ge0$ the integrand can be rewritten in terms of elementary functions using that
                $$z^m-frac12_2F_1left(frac12,m+frac12;m+frac32;zright)=fracleft(frac12right)_m+1m!left[frac2arcsinsqrt zz-sqrt1-zcdotsum_k=1^mfrac(k-1)!,z^k-frac32left(frac12right)_kright].$$
                The initial integral therefore breaks down into finite number of pieces of 3 different types - however, neither of them looks computable.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Aug 17 '16 at 11:41









                Start wearing purpleStart wearing purple

                47.3k12135192




                47.3k12135192



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1890376%2fchallenging-definite-integral-of-hypergeometric-functions%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                    Ingelân Ynhâld Etymology | Geografy | Skiednis | Polityk en bestjoer | Ekonomy | Demografy | Kultuer | Klimaat | Sjoch ek | Keppelings om utens | Boarnen, noaten en referinsjes Navigaasjemenuwww.gov.ukOffisjele webside fan it regear fan it Feriene KeninkrykOffisjele webside fan it Britske FerkearsburoNederlânsktalige ynformaasje fan it Britske FerkearsburoOffisjele webside fan English Heritage, de organisaasje dy't him ynset foar it behâld fan it Ingelske kultuergoedYnwennertallen fan alle Britske stêden út 'e folkstelling fan 2011Notes en References, op dizze sideEngland

                    Հադիս Բովանդակություն Անվանում և նշանակություն | Դասակարգում | Աղբյուրներ | Նավարկման ցանկ