$int_0^1fraclnxln(1+x)1+xdx$ The Next CEO of Stack OverflowWays to prove $ int_0^1 fracln^2(1+x)xdx = fraczeta(3)4$?how to evaluate $int_0^fracpi2frac1sqrtsin xtextdx$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3$Integral $int_0^infty fracsqrt[3]x+1 - sqrt[3]xsqrtx , mathrm dx$Integral of Bessel function multiplied with sine $int_0^infty J_0(bx) sin(ax) dx$.Definite integral problem of $fracx^nn!$Derivative of improper Integral $f(t)= int_0^1 fracsin(xt)x:dx$Ways to evaluate $int_0^1 int_0^1 frac11-xydxdy = fracpi^26$Asymptotics of a double integral: $ int_0^inftyduint_0^inftydv, frac1(u+v)^2expleft(-fracxu+vright)$Calculate an approximation of $int_0^1int_0^1fraclog(xy)xy-1+log(xy)dxdy$Show that $int_0^inftyfracoperatornameLi_s(-x)x^alpha+1mathrm dx=-frac1alpha^sfracpisin(pi alpha)$

Why was Sir Cadogan fired?

How does a dynamic QR code work?

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what pi version

Can this transistor (2n2222) take 6V on emitter-base? Am I reading datasheet incorrectly?

Is a linearly independent set whose span is dense a Schauder basis?

Compilation of a 2d array and a 1d array

Avoiding the "not like other girls" trope?

How seriously should I take size and weight limits of hand luggage?

My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?

How should I connect my cat5 cable to connectors having an orange-green line?

How to implement Comparable so it is consistent with identity-equality

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

Free fall ellipse or parabola?

Find the majority element, which appears more than half the time

How exploitable/balanced is this homebrew spell: Spell Permanency?

A hang glider, sudden unexpected lift to 25,000 feet altitude, what could do this?

How do I secure a TV wall mount?

Mathematica command that allows it to read my intentions

Is it possible to make a 9x9 table fit within the default margins?

How can a day be of 24 hours?

Is it possible to create a QR code using text?

MT "will strike" & LXX "will watch carefully" (Gen 3:15)?

Upgrading From a 9 Speed Sora Derailleur?

Is it okay to majorly distort historical facts while writing a fiction story?



$int_0^1fraclnxln(1+x)1+xdx$



The Next CEO of Stack OverflowWays to prove $ int_0^1 fracln^2(1+x)xdx = fraczeta(3)4$?how to evaluate $int_0^fracpi2frac1sqrtsin xtextdx$Integral $I:=int_0^1 fraclog^2 xx^2-x+1mathrm dx=frac10pi^381 sqrt 3}$Integral $int_0^infty frac{sqrt[3]x+1 - sqrt[3]xsqrtx , mathrm dx$Integral of Bessel function multiplied with sine $int_0^infty J_0(bx) sin(ax) dx$.Definite integral problem of $fracx^nn!$Derivative of improper Integral $f(t)= int_0^1 fracsin(xt)x:dx$Ways to evaluate $int_0^1 int_0^1 frac11-xydxdy = fracpi^26$Asymptotics of a double integral: $ int_0^inftyduint_0^inftydv, frac1(u+v)^2expleft(-fracxu+vright)$Calculate an approximation of $int_0^1int_0^1fraclog(xy)xy-1+log(xy)dxdy$Show that $int_0^inftyfracoperatornameLi_s(-x)x^alpha+1mathrm dx=-frac1alpha^sfracpisin(pi alpha)$










1












$begingroup$


I want to solve for the following Integral:
$$int_0^1fraclnxln(1+x)1+xdx$$



I have tried to use:
$$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$



and so
$$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    I want to solve for the following Integral:
    $$int_0^1fraclnxln(1+x)1+xdx$$



    I have tried to use:
    $$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$



    and so
    $$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$










    share|cite|improve this question











    $endgroup$














      1












      1








      1


      1



      $begingroup$


      I want to solve for the following Integral:
      $$int_0^1fraclnxln(1+x)1+xdx$$



      I have tried to use:
      $$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$



      and so
      $$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$










      share|cite|improve this question











      $endgroup$




      I want to solve for the following Integral:
      $$int_0^1fraclnxln(1+x)1+xdx$$



      I have tried to use:
      $$ln(1+x)=-sum_k=1^inftyfrac(-1)^kx^kk$$



      and so
      $$int_0^1fraclnxln(1+x)1+xdx=-sum_k=1^inftyfrac(-1)^kkint_0^1fracx^klnx1+xdx$$







      definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 28 at 10:16









      Milten

      3226




      3226










      asked Mar 28 at 9:59









      Reynan HenryReynan Henry

      801




      801




















          3 Answers
          3






          active

          oldest

          votes


















          0












          $begingroup$

          Hint: without power series: use the substitution $t=ln(1+x)$.






          share|cite|improve this answer









          $endgroup$




















            0












            $begingroup$

            The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.






            share|cite|improve this answer









            $endgroup$




















              0












              $begingroup$

              Let
              $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
              Integrating by parts we have
              $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
              The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
              $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165690%2fint-01-frac-lnx-ln1x1xdx%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                0












                $begingroup$

                Hint: without power series: use the substitution $t=ln(1+x)$.






                share|cite|improve this answer









                $endgroup$

















                  0












                  $begingroup$

                  Hint: without power series: use the substitution $t=ln(1+x)$.






                  share|cite|improve this answer









                  $endgroup$















                    0












                    0








                    0





                    $begingroup$

                    Hint: without power series: use the substitution $t=ln(1+x)$.






                    share|cite|improve this answer









                    $endgroup$



                    Hint: without power series: use the substitution $t=ln(1+x)$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Mar 28 at 10:04









                    FredFred

                    48.7k11849




                    48.7k11849





















                        0












                        $begingroup$

                        The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.






                            share|cite|improve this answer









                            $endgroup$



                            The integral is $frac 1 2int_0^1 f(g^2)'(x)dx$ where $g(x)=log (1+x)$. Integrating by parts we get $frac 1 2 [fg^2|_0^1-int_0^1 frac g(x)^2 x dx]$. To compute the integral in the second term make the substitution $y=log (1+x)$. You will now get something familiar and I will let you complete the evaluation.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Mar 28 at 10:07









                            Kavi Rama MurthyKavi Rama Murthy

                            71.6k53170




                            71.6k53170





















                                0












                                $begingroup$

                                Let
                                $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
                                Integrating by parts we have
                                $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
                                The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
                                $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$






                                share|cite|improve this answer









                                $endgroup$

















                                  0












                                  $begingroup$

                                  Let
                                  $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
                                  Integrating by parts we have
                                  $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
                                  The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
                                  $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$






                                  share|cite|improve this answer









                                  $endgroup$















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Let
                                    $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
                                    Integrating by parts we have
                                    $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
                                    The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
                                    $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$






                                    share|cite|improve this answer









                                    $endgroup$



                                    Let
                                    $$I = int_0^1 fracln x ln (1 + x)1 + x , dx.$$
                                    Integrating by parts we have
                                    $$I = - frac12 int_0^1 fracln^2 (1 + x)x , dx tag1$$
                                    The integral appearing in (1) can be calculated in various ways. One way I have already shown here. The result is $zeta (3)/4$ where $zeta (z)$ is the Riemann zeta function. Thus
                                    $$int_0^1 fracln x ln (1 + x)1 + x , dx = -frac18 zeta (3).$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Mar 28 at 10:16









                                    omegadotomegadot

                                    6,2592829




                                    6,2592829



























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165690%2fint-01-frac-lnx-ln1x1xdx%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

                                        Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

                                        Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε