Finding a probability density from an exponential family using a moment generating function Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Finding a probability distribution given the moment generating functionHow to find probability distribution function given the Moment Generating FunctionProbability density function with the help of the Laplace (Fourier) transformCompute conditional expectation from moment generating functionFind the moment generating function of the random variableFinding Probability Density Function and ProbabilityExpectation and Variance using Moment Generating FunctionsMoment generating function within another functionFinding the probability density function of $Z = X + Y$Establish bound for a probability using moment generating function

How do I find out the mythology and history of my Fortress?

Do wooden building fires get hotter than 600°C?

AppleTVs create a chatty alternate WiFi network

Drawing without replacement: why is the order of draw irrelevant?

How would a mousetrap for use in space work?

If Windows 7 doesn't support WSL, then what does Linux subsystem option mean?

Crossing US/Canada Border for less than 24 hours

Why does it sometimes sound good to play a grace note as a lead in to a note in a melody?

Dating a Former Employee

What's the meaning of "fortified infraction restraint"?

Disembodied hand growing fangs

Maximum summed subsequences with non-adjacent items

What are the out-of-universe reasons for the references to Toby Maguire-era Spider-Man in Into the Spider-Verse?

Is a ledger board required if the side of my house is wood?

Did Deadpool rescue all of the X-Force?

How could we fake a moon landing now?

Why should I vote and accept answers?

How to write this math term? with cases it isn't working

Why weren't discrete x86 CPUs ever used in game hardware?

SF book about people trapped in a series of worlds they imagine

Is CEO the "profession" with the most psychopaths?

Is there hard evidence that the grant peer review system performs significantly better than random?

Time to Settle Down!

Chinese Seal on silk painting - what does it mean?



Finding a probability density from an exponential family using a moment generating function



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)Finding a probability distribution given the moment generating functionHow to find probability distribution function given the Moment Generating FunctionProbability density function with the help of the Laplace (Fourier) transformCompute conditional expectation from moment generating functionFind the moment generating function of the random variableFinding Probability Density Function and ProbabilityExpectation and Variance using Moment Generating FunctionsMoment generating function within another functionFinding the probability density function of $Z = X + Y$Establish bound for a probability using moment generating function










0












$begingroup$


I would like to find the density of a sum of i.i.d. random variables $barY=frac1nu(Y_1+...+Y_nu)$, where the density of these random variables is $f_Y(y;theta)=e^theta y - b(theta)f_0(y)$. In turn, the density $f_0(y)$ is specified using the m.g.f. $M_0(xi)=e^b(xi)$ and a differentiable function $b(xi)$.



Edit: Found an additional bit of information that the resulting distribution has to be from the exponential family $f_barY(y;theta, phi)= exp(fracytheta-b(theta)a(phi)+c(y, phi))$, where $a(phi)=nu^-1$.



Attempt 1:



Omitting the details, I found the m.g.f. of $f_Y(y,theta)$ to be equal to $M_Y(xi)=e^b(xi + theta)-b(theta)$.



Then, I computed the m.g.f. of the sum of $Y_i$'s using this property, which resulted in
$$M_barY(xi)=left(M_Y(frac1nuxi)right)^nu=e^nuleft(b(frac1nuxi+theta)-b(theta)right)$$
I cannot find a way to transform this into $f_hatY(y; theta)$ and would greatly appreciate a pointer or a suggestion on how to proceed.



Attempt 2:



What seems like a possible solution is to recast $M_barY$ into the form of $M_Y$ and reconstruct the density from that. For example, if one were to introduce substitutions like $tildeb(theta)=nu b(theta)$ and $tildexi=frac1nuxi$, then the expressions of the two m.g.f.'s would be identical. This means that
$$M_barY(tildexi)=
int_-infty^inftye^tildexiye^theta y-tildeb(theta)f_0(y)dy=
int_-infty^inftye^tildexiye^theta y-nu b(theta)f_0(y)dy.$$

I am not entirely sure how to deal with $tildexi$ at this point... Is it a permissible operation to transform $y$ in the integral into $tildey=frac1nu y$? It would then follow that
$$int_-infty^inftye^tildexiye^theta y-nu b(theta)f_0(y)dy=
int_-infty^inftye^xitildeye^nutheta tildey-nu b(theta)nuf_0(nutildey)dtildey=
int_-infty^inftye^xitildeye^nutheta tildey-nu b(theta)+ln(nuf_0(nutildey))dtildey.$$

The density would then be expressed as $f_hatY(y;theta, nu)=e^nu(theta tildey-b(theta))+ln(nuf_0(nutildey))$ and it would have the form in the desired form mentioned in the Edit above.



Would this make sense? My math background is not really so strong, so I have a feeling that I could have made some illegitimate operations here...










share|cite|improve this question











$endgroup$
















    0












    $begingroup$


    I would like to find the density of a sum of i.i.d. random variables $barY=frac1nu(Y_1+...+Y_nu)$, where the density of these random variables is $f_Y(y;theta)=e^theta y - b(theta)f_0(y)$. In turn, the density $f_0(y)$ is specified using the m.g.f. $M_0(xi)=e^b(xi)$ and a differentiable function $b(xi)$.



    Edit: Found an additional bit of information that the resulting distribution has to be from the exponential family $f_barY(y;theta, phi)= exp(fracytheta-b(theta)a(phi)+c(y, phi))$, where $a(phi)=nu^-1$.



    Attempt 1:



    Omitting the details, I found the m.g.f. of $f_Y(y,theta)$ to be equal to $M_Y(xi)=e^b(xi + theta)-b(theta)$.



    Then, I computed the m.g.f. of the sum of $Y_i$'s using this property, which resulted in
    $$M_barY(xi)=left(M_Y(frac1nuxi)right)^nu=e^nuleft(b(frac1nuxi+theta)-b(theta)right)$$
    I cannot find a way to transform this into $f_hatY(y; theta)$ and would greatly appreciate a pointer or a suggestion on how to proceed.



    Attempt 2:



    What seems like a possible solution is to recast $M_barY$ into the form of $M_Y$ and reconstruct the density from that. For example, if one were to introduce substitutions like $tildeb(theta)=nu b(theta)$ and $tildexi=frac1nuxi$, then the expressions of the two m.g.f.'s would be identical. This means that
    $$M_barY(tildexi)=
    int_-infty^inftye^tildexiye^theta y-tildeb(theta)f_0(y)dy=
    int_-infty^inftye^tildexiye^theta y-nu b(theta)f_0(y)dy.$$

    I am not entirely sure how to deal with $tildexi$ at this point... Is it a permissible operation to transform $y$ in the integral into $tildey=frac1nu y$? It would then follow that
    $$int_-infty^inftye^tildexiye^theta y-nu b(theta)f_0(y)dy=
    int_-infty^inftye^xitildeye^nutheta tildey-nu b(theta)nuf_0(nutildey)dtildey=
    int_-infty^inftye^xitildeye^nutheta tildey-nu b(theta)+ln(nuf_0(nutildey))dtildey.$$

    The density would then be expressed as $f_hatY(y;theta, nu)=e^nu(theta tildey-b(theta))+ln(nuf_0(nutildey))$ and it would have the form in the desired form mentioned in the Edit above.



    Would this make sense? My math background is not really so strong, so I have a feeling that I could have made some illegitimate operations here...










    share|cite|improve this question











    $endgroup$














      0












      0








      0





      $begingroup$


      I would like to find the density of a sum of i.i.d. random variables $barY=frac1nu(Y_1+...+Y_nu)$, where the density of these random variables is $f_Y(y;theta)=e^theta y - b(theta)f_0(y)$. In turn, the density $f_0(y)$ is specified using the m.g.f. $M_0(xi)=e^b(xi)$ and a differentiable function $b(xi)$.



      Edit: Found an additional bit of information that the resulting distribution has to be from the exponential family $f_barY(y;theta, phi)= exp(fracytheta-b(theta)a(phi)+c(y, phi))$, where $a(phi)=nu^-1$.



      Attempt 1:



      Omitting the details, I found the m.g.f. of $f_Y(y,theta)$ to be equal to $M_Y(xi)=e^b(xi + theta)-b(theta)$.



      Then, I computed the m.g.f. of the sum of $Y_i$'s using this property, which resulted in
      $$M_barY(xi)=left(M_Y(frac1nuxi)right)^nu=e^nuleft(b(frac1nuxi+theta)-b(theta)right)$$
      I cannot find a way to transform this into $f_hatY(y; theta)$ and would greatly appreciate a pointer or a suggestion on how to proceed.



      Attempt 2:



      What seems like a possible solution is to recast $M_barY$ into the form of $M_Y$ and reconstruct the density from that. For example, if one were to introduce substitutions like $tildeb(theta)=nu b(theta)$ and $tildexi=frac1nuxi$, then the expressions of the two m.g.f.'s would be identical. This means that
      $$M_barY(tildexi)=
      int_-infty^inftye^tildexiye^theta y-tildeb(theta)f_0(y)dy=
      int_-infty^inftye^tildexiye^theta y-nu b(theta)f_0(y)dy.$$

      I am not entirely sure how to deal with $tildexi$ at this point... Is it a permissible operation to transform $y$ in the integral into $tildey=frac1nu y$? It would then follow that
      $$int_-infty^inftye^tildexiye^theta y-nu b(theta)f_0(y)dy=
      int_-infty^inftye^xitildeye^nutheta tildey-nu b(theta)nuf_0(nutildey)dtildey=
      int_-infty^inftye^xitildeye^nutheta tildey-nu b(theta)+ln(nuf_0(nutildey))dtildey.$$

      The density would then be expressed as $f_hatY(y;theta, nu)=e^nu(theta tildey-b(theta))+ln(nuf_0(nutildey))$ and it would have the form in the desired form mentioned in the Edit above.



      Would this make sense? My math background is not really so strong, so I have a feeling that I could have made some illegitimate operations here...










      share|cite|improve this question











      $endgroup$




      I would like to find the density of a sum of i.i.d. random variables $barY=frac1nu(Y_1+...+Y_nu)$, where the density of these random variables is $f_Y(y;theta)=e^theta y - b(theta)f_0(y)$. In turn, the density $f_0(y)$ is specified using the m.g.f. $M_0(xi)=e^b(xi)$ and a differentiable function $b(xi)$.



      Edit: Found an additional bit of information that the resulting distribution has to be from the exponential family $f_barY(y;theta, phi)= exp(fracytheta-b(theta)a(phi)+c(y, phi))$, where $a(phi)=nu^-1$.



      Attempt 1:



      Omitting the details, I found the m.g.f. of $f_Y(y,theta)$ to be equal to $M_Y(xi)=e^b(xi + theta)-b(theta)$.



      Then, I computed the m.g.f. of the sum of $Y_i$'s using this property, which resulted in
      $$M_barY(xi)=left(M_Y(frac1nuxi)right)^nu=e^nuleft(b(frac1nuxi+theta)-b(theta)right)$$
      I cannot find a way to transform this into $f_hatY(y; theta)$ and would greatly appreciate a pointer or a suggestion on how to proceed.



      Attempt 2:



      What seems like a possible solution is to recast $M_barY$ into the form of $M_Y$ and reconstruct the density from that. For example, if one were to introduce substitutions like $tildeb(theta)=nu b(theta)$ and $tildexi=frac1nuxi$, then the expressions of the two m.g.f.'s would be identical. This means that
      $$M_barY(tildexi)=
      int_-infty^inftye^tildexiye^theta y-tildeb(theta)f_0(y)dy=
      int_-infty^inftye^tildexiye^theta y-nu b(theta)f_0(y)dy.$$

      I am not entirely sure how to deal with $tildexi$ at this point... Is it a permissible operation to transform $y$ in the integral into $tildey=frac1nu y$? It would then follow that
      $$int_-infty^inftye^tildexiye^theta y-nu b(theta)f_0(y)dy=
      int_-infty^inftye^xitildeye^nutheta tildey-nu b(theta)nuf_0(nutildey)dtildey=
      int_-infty^inftye^xitildeye^nutheta tildey-nu b(theta)+ln(nuf_0(nutildey))dtildey.$$

      The density would then be expressed as $f_hatY(y;theta, nu)=e^nu(theta tildey-b(theta))+ln(nuf_0(nutildey))$ and it would have the form in the desired form mentioned in the Edit above.



      Would this make sense? My math background is not really so strong, so I have a feeling that I could have made some illegitimate operations here...







      probability probability-theory moment-generating-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 2 at 11:40







      J.K.

















      asked Apr 1 at 18:00









      J.K.J.K.

      1637




      1637




















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170930%2ffinding-a-probability-density-from-an-exponential-family-using-a-moment-generati%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170930%2ffinding-a-probability-density-from-an-exponential-family-using-a-moment-generati%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu

          Σερβία Πίνακας περιεχομένων Γεωγραφία | Ιστορία | Πολιτική | Δημογραφία | Οικονομία | Τουρισμός | Εκπαίδευση και επιστήμη | Πολιτισμός | Δείτε επίσης | Παραπομπές | Εξωτερικοί σύνδεσμοι | Μενού πλοήγησης43°49′00″N 21°08′00″E / 43.8167°N 21.1333°E / 43.8167; 21.133344°49′14″N 20°27′44″E / 44.8206°N 20.4622°E / 44.8206; 20.4622 (Βελιγράδι)Επίσημη εκτίμηση«Σερβία»«Human Development Report 2018»Παγκόσμιος Οργανισμός Υγείας, Προσδόκιμο ζωής και υγιές προσδόκιμο ζωής, Δεδομένα ανά χώρα2003 statistics2004 statistics2005 statistics2006 statistics2007 statistics2008 statistics2009-2013 statistics2014 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 20152016 statisticsStatistical Yearbook of the Republic of Serbia – Tourism, 2015Πληροφορίες σχετικά με τη Σερβία και τον πολιτισμό τηςΣερβική ΠροεδρίαΕθνικός Οργανισμός Τουρισμού της ΣερβίαςΣερβική ΕθνοσυνέλευσηΣερβίαεε