$Gammamodelsphi$ if and only if $Gamma,negphimodelspsilandnegpsi$ The 2019 Stack Overflow Developer Survey Results Are InShow that $(phi rightarrow psi), (phi rightarrow neg psi) vdash neg phi$Is it correct that If $mathcal A $ is a model of $Gamma $, and if $Gamma models psi$ then $mathcal A models psi $?Show that $Gamma cup neg phi$ is satisfiable if and only if $Gammanot models phi$How to show that if $neg b = a land d$ then $a land neg b = neg b$ and $b land neg a = neg a$If $models neg phi$, then $models phi^circ$, where $phi^circ$ is the “semi-dual” of $phi$Prove that a theory $Gamma$ is consistent if and only if there is a structure $M$ so that $M$ $models$ $Gamma$.not always $A models phi$ or $A models neg phi$ exampleIf $Gamma$ is consistent and $Gammanotvdashphi$, then $Gammacupnegphi$ is also consistent. Why?Is there any way to simplify $(Aland B land C) lor (neg A land neg B land neg C)$?Show that $vdash Gamma cup psi$ implies $vdash Gamma cup psi'$ where $psi'$ is $psi$ with one of its bound variables renamed.
How to deal with fear of taking dependencies
How come people say “Would of”?
aging parents with no investments
What tool would a Roman-age civilization have to grind silver and other metals into dust?
Where does the "burst of radiance" from Holy Weapon originate?
Can't find the latex code for the ⍎ (down tack jot) symbol
What do the Banks children have against barley water?
Confusion about non-derivable continuous functions
Does it makes sense to buy a new cycle to learn riding?
Why don't Unix/Linux systems traverse through directories until they find the required version of a linked library?
Landlord wants to switch my lease to a "Land contract" to "get back at the city"
Why could you hear an Amstrad CPC working?
Unbreakable Formation vs. Cry of the Carnarium
A poker game description that does not feel gimmicky
Patience, young "Padovan"
Is bread bad for ducks?
Inversion Puzzle
Are there any other methods to apply to solving simultaneous equations?
Output the Arecibo Message
Spanish for "widget"
"What time...?" or "At what time...?" - what is more grammatically correct?
How can I create a character who can assume the widest possible range of creature sizes?
Does a dangling wire really electrocute me if I'm standing in water?
Why can Shazam do this?
$Gammamodelsphi$ if and only if $Gamma,negphimodelspsilandnegpsi$
The 2019 Stack Overflow Developer Survey Results Are InShow that $(phi rightarrow psi), (phi rightarrow neg psi) vdash neg phi$Is it correct that If $mathcal A $ is a model of $Gamma $, and if $Gamma models psi$ then $mathcal A models psi $?Show that $Gamma cup neg phi$ is satisfiable if and only if $Gammanot models phi$How to show that if $neg b = a land d$ then $a land neg b = neg b$ and $b land neg a = neg a$If $models neg phi$, then $models phi^circ$, where $phi^circ$ is the “semi-dual” of $phi$Prove that a theory $Gamma$ is consistent if and only if there is a structure $M$ so that $M$ $models$ $Gamma$.not always $A models phi$ or $A models neg phi$ exampleIf $Gamma$ is consistent and $Gammanotvdashphi$, then $Gammacupnegphi$ is also consistent. Why?Is there any way to simplify $(Aland B land C) lor (neg A land neg B land neg C)$?Show that $vdash Gamma cup psi$ implies $vdash Gamma cup psi'$ where $psi'$ is $psi$ with one of its bound variables renamed.
$begingroup$
Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.
logic first-order-logic
$endgroup$
add a comment |
$begingroup$
Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.
logic first-order-logic
$endgroup$
add a comment |
$begingroup$
Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.
logic first-order-logic
$endgroup$
Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.
logic first-order-logic
logic first-order-logic
edited Mar 30 at 11:09
blub
3,299929
3,299929
asked Mar 30 at 10:50
Pedro SantosPedro Santos
16810
16810
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Written like this, it makes no sense. I assume you wanted to write
$$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$
To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.
Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.
From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.
From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.
$endgroup$
$begingroup$
Ah yes thats what i meant , yes Thank you my friend !
$endgroup$
– Pedro Santos
Mar 30 at 11:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168146%2fgamma-models-phi-if-and-only-if-gamma-neg-phi-models-psi-land-neg-psi%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Written like this, it makes no sense. I assume you wanted to write
$$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$
To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.
Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.
From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.
From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.
$endgroup$
$begingroup$
Ah yes thats what i meant , yes Thank you my friend !
$endgroup$
– Pedro Santos
Mar 30 at 11:00
add a comment |
$begingroup$
Written like this, it makes no sense. I assume you wanted to write
$$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$
To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.
Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.
From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.
From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.
$endgroup$
$begingroup$
Ah yes thats what i meant , yes Thank you my friend !
$endgroup$
– Pedro Santos
Mar 30 at 11:00
add a comment |
$begingroup$
Written like this, it makes no sense. I assume you wanted to write
$$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$
To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.
Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.
From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.
From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.
$endgroup$
Written like this, it makes no sense. I assume you wanted to write
$$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$
To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.
Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.
From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.
From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.
edited Mar 30 at 11:02
answered Mar 30 at 10:57
blubblub
3,299929
3,299929
$begingroup$
Ah yes thats what i meant , yes Thank you my friend !
$endgroup$
– Pedro Santos
Mar 30 at 11:00
add a comment |
$begingroup$
Ah yes thats what i meant , yes Thank you my friend !
$endgroup$
– Pedro Santos
Mar 30 at 11:00
$begingroup$
Ah yes thats what i meant , yes Thank you my friend !
$endgroup$
– Pedro Santos
Mar 30 at 11:00
$begingroup$
Ah yes thats what i meant , yes Thank you my friend !
$endgroup$
– Pedro Santos
Mar 30 at 11:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168146%2fgamma-models-phi-if-and-only-if-gamma-neg-phi-models-psi-land-neg-psi%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown