$Gammamodelsphi$ if and only if $Gamma,negphimodelspsilandnegpsi$ The 2019 Stack Overflow Developer Survey Results Are InShow that $(phi rightarrow psi), (phi rightarrow neg psi) vdash neg phi$Is it correct that If $mathcal A $ is a model of $Gamma $, and if $Gamma models psi$ then $mathcal A models psi $?Show that $Gamma cup neg phi$ is satisfiable if and only if $Gammanot models phi$How to show that if $neg b = a land d$ then $a land neg b = neg b$ and $b land neg a = neg a$If $models neg phi$, then $models phi^circ$, where $phi^circ$ is the “semi-dual” of $phi$Prove that a theory $Gamma$ is consistent if and only if there is a structure $M$ so that $M$ $models$ $Gamma$.not always $A models phi$ or $A models neg phi$ exampleIf $Gamma$ is consistent and $Gammanotvdashphi$, then $Gammacupnegphi$ is also consistent. Why?Is there any way to simplify $(Aland B land C) lor (neg A land neg B land neg C)$?Show that $vdash Gamma cup psi$ implies $vdash Gamma cup psi'$ where $psi'$ is $psi$ with one of its bound variables renamed.

How to deal with fear of taking dependencies

How come people say “Would of”?

aging parents with no investments

What tool would a Roman-age civilization have to grind silver and other metals into dust?

Where does the "burst of radiance" from Holy Weapon originate?

Can't find the latex code for the ⍎ (down tack jot) symbol

What do the Banks children have against barley water?

Confusion about non-derivable continuous functions

Does it makes sense to buy a new cycle to learn riding?

Why don't Unix/Linux systems traverse through directories until they find the required version of a linked library?

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

Why could you hear an Amstrad CPC working?

Unbreakable Formation vs. Cry of the Carnarium

A poker game description that does not feel gimmicky

Patience, young "Padovan"

Is bread bad for ducks?

Inversion Puzzle

Are there any other methods to apply to solving simultaneous equations?

Output the Arecibo Message

Spanish for "widget"

"What time...?" or "At what time...?" - what is more grammatically correct?

How can I create a character who can assume the widest possible range of creature sizes?

Does a dangling wire really electrocute me if I'm standing in water?

Why can Shazam do this?



$Gammamodelsphi$ if and only if $Gamma,negphimodelspsilandnegpsi$



The 2019 Stack Overflow Developer Survey Results Are InShow that $(phi rightarrow psi), (phi rightarrow neg psi) vdash neg phi$Is it correct that If $mathcal A $ is a model of $Gamma $, and if $Gamma models psi$ then $mathcal A models psi $?Show that $Gamma cup neg phi$ is satisfiable if and only if $Gammanot models phi$How to show that if $neg b = a land d$ then $a land neg b = neg b$ and $b land neg a = neg a$If $models neg phi$, then $models phi^circ$, where $phi^circ$ is the “semi-dual” of $phi$Prove that a theory $Gamma$ is consistent if and only if there is a structure $M$ so that $M$ $models$ $Gamma$.not always $A models phi$ or $A models neg phi$ exampleIf $Gamma$ is consistent and $Gammanotvdashphi$, then $Gammacupnegphi$ is also consistent. Why?Is there any way to simplify $(Aland B land C) lor (neg A land neg B land neg C)$?Show that $vdash Gamma cup psi$ implies $vdash Gamma cup psi'$ where $psi'$ is $psi$ with one of its bound variables renamed.










1












$begingroup$


Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.










share|cite|improve this question











$endgroup$
















    1












    $begingroup$


    Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$


      Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.










      share|cite|improve this question











      $endgroup$




      Let $Gammacupphi,psisubseteq L epsilon$ then $Gammamodelspsi$ if and only if $Gamma,(negphi)models(psiland(negpsi))$. I don't seem to understand how the reverse implication goes. Can anyone help me out ? Thanks.







      logic first-order-logic






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 30 at 11:09









      blub

      3,299929




      3,299929










      asked Mar 30 at 10:50









      Pedro SantosPedro Santos

      16810




      16810




















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168146%2fgamma-models-phi-if-and-only-if-gamma-neg-phi-models-psi-land-neg-psi%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00















          1












          $begingroup$

          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00













          1












          1








          1





          $begingroup$

          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.






          share|cite|improve this answer











          $endgroup$



          Written like this, it makes no sense. I assume you wanted to write



          $$Gammamodelsphitext iff Gamma,negphimodelspsilandnegpsi$$




          To prove this, it is helpful to note that for $Deltacuppsisubseteqmathcal L_FO$, $Deltanotmodelspsilandnegpsi$ iff $Delta$ is satisfiable, as then there is an interpretation $mathcal I$ s.t. $mathcal ImodelsDelta$, and naturally $mathcal Inotmodelspsilandnegpsi$.



          Now on to proving the equivalence. Let $Gammacupphi,psisubseteqmathcal L_FO$.



          From left to right, assume $Gammamodelsphi$, i.e. for every interpretation $mathcal I$: $mathcal ImodelsGamma$ implies $mathcal Imodelsphi$. Thus, no interpretation $mathcal I$ models $Gamma,negphi$ and thus for every interpretation $mathcal I$: $mathcal ImodelsGamma,negphi$ implies $mathcal Imodelspsilandnegpsi$.



          From right to left, assume $Gammanotmodelsphi$, i.e. there is an interpretation $mathcal I$ s.t. $mathcal ImodelsGamma$ but $mathcal Inotmodelsphi$. The latter implies $mathcal Imodelsnegphi$. Thus $mathcal ImodelsGamma,negphi$, i.e. $Gamma,negphi$ is satisfiable and thus $Gamma,negphinotmodelspsilandnegpsi$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 30 at 11:02

























          answered Mar 30 at 10:57









          blubblub

          3,299929




          3,299929











          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00
















          • $begingroup$
            Ah yes thats what i meant , yes Thank you my friend !
            $endgroup$
            – Pedro Santos
            Mar 30 at 11:00















          $begingroup$
          Ah yes thats what i meant , yes Thank you my friend !
          $endgroup$
          – Pedro Santos
          Mar 30 at 11:00




          $begingroup$
          Ah yes thats what i meant , yes Thank you my friend !
          $endgroup$
          – Pedro Santos
          Mar 30 at 11:00

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168146%2fgamma-models-phi-if-and-only-if-gamma-neg-phi-models-psi-land-neg-psi%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

          Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

          Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu