A conjecture about number 641 The 2019 Stack Overflow Developer Survey Results Are InWeak version of Fortune's conjectureA different approach to the strong Goldbach conjecture?Proof of Prime Maker ConjectureSome questions about Goldbach's conjectureIs my conjecture true? : Every primorial is a superior highly regular number, and every superior highly regular number is a primorial.Is 641 the Smallest Factor of any Composite Fermat Number?Is every primorial number squarefree?Conjecture concerning modular arithmeticConjecture about the prime number functionExpected size of the maximal prime gap below x under Hardy-Littlewood conjecture

Can distinct morphisms between curves induce the same morphism on singular cohomology?

What does "rabbited" mean/imply in this sentence?

Monty Hall variation

In microwave frequencies, do you use a circulator when you need a (near) perfect diode?

What effect does the “loading” weapon property have in practical terms?

Dual Citizen. Exited the US on Italian passport recently

Why is the maximum length of OpenWrt’s root password 8 characters?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

How to reverse every other sublist of a list?

On the insanity of kings as an argument against monarchy

CiviEvent: Public link for events of a specific type

Geography at the pixel level

How long do I have to send payment?

Inflated grade on resume at previous job, might former employer tell new employer?

Does it makes sense to buy a new cycle to learn riding?

What can other administrators access on my machine?

Manuscript was "unsubmitted" because the manuscript was deposited in Arxiv Preprints

What is the steepest angle that a canal can be traversable without locks?

Why can Shazam do this?

How are circuits which use complex ICs normally simulated?

JSON.serialize: is it possible to suppress null values of a map?

Falsification in Math vs Science

Are USB sockets on wall outlets live all the time, even when the switch is off?

Why Did Howard Stark Use All The Vibranium They Had On A Prototype Shield?



A conjecture about number 641



The 2019 Stack Overflow Developer Survey Results Are InWeak version of Fortune's conjectureA different approach to the strong Goldbach conjecture?Proof of Prime Maker ConjectureSome questions about Goldbach's conjectureIs my conjecture true? : Every primorial is a superior highly regular number, and every superior highly regular number is a primorial.Is 641 the Smallest Factor of any Composite Fermat Number?Is every primorial number squarefree?Conjecture concerning modular arithmeticConjecture about the prime number functionExpected size of the maximal prime gap below x under Hardy-Littlewood conjecture










0












$begingroup$


I conjecture that $233#-1$ is the only number of the form $p#-1$, where p is a prime and # denotes the primorial function, which is divisibile by $641$. $641$ is the smallest prime dividing $F_5$, as shown by Euler.










share|cite|improve this question











$endgroup$











  • $begingroup$
    @Peter could you disproof the conjecture?
    $endgroup$
    – homunculus
    Mar 30 at 11:41






  • 2




    $begingroup$
    The only thing I see about $641$ is that it's prime and it's a factor of $F5$, the 5th Fermat's number. If that's the case, I am not really sure why this type of conjecture should be unique to $641$, if it is indeed true.
    $endgroup$
    – Mann
    Mar 30 at 11:47











  • $begingroup$
    @Mann can you find another prime p such that p#-1 is divisibile by 641?
    $endgroup$
    – homunculus
    Mar 30 at 11:50











  • $begingroup$
    No, what I mean is. What is unique about the conjecture $p' # - 1$ divisible by some prime $p_0$. If it's for $641$, can't I take some other values? What makes you think $641$ and $233$ are unique? This could help us proceed.
    $endgroup$
    – Mann
    Mar 30 at 11:52
















0












$begingroup$


I conjecture that $233#-1$ is the only number of the form $p#-1$, where p is a prime and # denotes the primorial function, which is divisibile by $641$. $641$ is the smallest prime dividing $F_5$, as shown by Euler.










share|cite|improve this question











$endgroup$











  • $begingroup$
    @Peter could you disproof the conjecture?
    $endgroup$
    – homunculus
    Mar 30 at 11:41






  • 2




    $begingroup$
    The only thing I see about $641$ is that it's prime and it's a factor of $F5$, the 5th Fermat's number. If that's the case, I am not really sure why this type of conjecture should be unique to $641$, if it is indeed true.
    $endgroup$
    – Mann
    Mar 30 at 11:47











  • $begingroup$
    @Mann can you find another prime p such that p#-1 is divisibile by 641?
    $endgroup$
    – homunculus
    Mar 30 at 11:50











  • $begingroup$
    No, what I mean is. What is unique about the conjecture $p' # - 1$ divisible by some prime $p_0$. If it's for $641$, can't I take some other values? What makes you think $641$ and $233$ are unique? This could help us proceed.
    $endgroup$
    – Mann
    Mar 30 at 11:52














0












0








0





$begingroup$


I conjecture that $233#-1$ is the only number of the form $p#-1$, where p is a prime and # denotes the primorial function, which is divisibile by $641$. $641$ is the smallest prime dividing $F_5$, as shown by Euler.










share|cite|improve this question











$endgroup$




I conjecture that $233#-1$ is the only number of the form $p#-1$, where p is a prime and # denotes the primorial function, which is divisibile by $641$. $641$ is the smallest prime dividing $F_5$, as shown by Euler.







number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Mar 30 at 12:02







homunculus

















asked Mar 30 at 11:37









homunculushomunculus

17410




17410











  • $begingroup$
    @Peter could you disproof the conjecture?
    $endgroup$
    – homunculus
    Mar 30 at 11:41






  • 2




    $begingroup$
    The only thing I see about $641$ is that it's prime and it's a factor of $F5$, the 5th Fermat's number. If that's the case, I am not really sure why this type of conjecture should be unique to $641$, if it is indeed true.
    $endgroup$
    – Mann
    Mar 30 at 11:47











  • $begingroup$
    @Mann can you find another prime p such that p#-1 is divisibile by 641?
    $endgroup$
    – homunculus
    Mar 30 at 11:50











  • $begingroup$
    No, what I mean is. What is unique about the conjecture $p' # - 1$ divisible by some prime $p_0$. If it's for $641$, can't I take some other values? What makes you think $641$ and $233$ are unique? This could help us proceed.
    $endgroup$
    – Mann
    Mar 30 at 11:52

















  • $begingroup$
    @Peter could you disproof the conjecture?
    $endgroup$
    – homunculus
    Mar 30 at 11:41






  • 2




    $begingroup$
    The only thing I see about $641$ is that it's prime and it's a factor of $F5$, the 5th Fermat's number. If that's the case, I am not really sure why this type of conjecture should be unique to $641$, if it is indeed true.
    $endgroup$
    – Mann
    Mar 30 at 11:47











  • $begingroup$
    @Mann can you find another prime p such that p#-1 is divisibile by 641?
    $endgroup$
    – homunculus
    Mar 30 at 11:50











  • $begingroup$
    No, what I mean is. What is unique about the conjecture $p' # - 1$ divisible by some prime $p_0$. If it's for $641$, can't I take some other values? What makes you think $641$ and $233$ are unique? This could help us proceed.
    $endgroup$
    – Mann
    Mar 30 at 11:52
















$begingroup$
@Peter could you disproof the conjecture?
$endgroup$
– homunculus
Mar 30 at 11:41




$begingroup$
@Peter could you disproof the conjecture?
$endgroup$
– homunculus
Mar 30 at 11:41




2




2




$begingroup$
The only thing I see about $641$ is that it's prime and it's a factor of $F5$, the 5th Fermat's number. If that's the case, I am not really sure why this type of conjecture should be unique to $641$, if it is indeed true.
$endgroup$
– Mann
Mar 30 at 11:47





$begingroup$
The only thing I see about $641$ is that it's prime and it's a factor of $F5$, the 5th Fermat's number. If that's the case, I am not really sure why this type of conjecture should be unique to $641$, if it is indeed true.
$endgroup$
– Mann
Mar 30 at 11:47













$begingroup$
@Mann can you find another prime p such that p#-1 is divisibile by 641?
$endgroup$
– homunculus
Mar 30 at 11:50





$begingroup$
@Mann can you find another prime p such that p#-1 is divisibile by 641?
$endgroup$
– homunculus
Mar 30 at 11:50













$begingroup$
No, what I mean is. What is unique about the conjecture $p' # - 1$ divisible by some prime $p_0$. If it's for $641$, can't I take some other values? What makes you think $641$ and $233$ are unique? This could help us proceed.
$endgroup$
– Mann
Mar 30 at 11:52





$begingroup$
No, what I mean is. What is unique about the conjecture $p' # - 1$ divisible by some prime $p_0$. If it's for $641$, can't I take some other values? What makes you think $641$ and $233$ are unique? This could help us proceed.
$endgroup$
– Mann
Mar 30 at 11:52











1 Answer
1






active

oldest

votes


















3












$begingroup$

It is true, but I doubt there's any significance to it. The number $p# - 1$ is clearly not divisible by $641$ if $pgeq 641$, and it turns out that $233# equiv 1pmod641$. Similarly, $3#1 - 1 = 5$ is divisible by $5$; and $7#-1 = 209$ is divisible by $11$ and $19$; and etc.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168204%2fa-conjecture-about-number-641%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    It is true, but I doubt there's any significance to it. The number $p# - 1$ is clearly not divisible by $641$ if $pgeq 641$, and it turns out that $233# equiv 1pmod641$. Similarly, $3#1 - 1 = 5$ is divisible by $5$; and $7#-1 = 209$ is divisible by $11$ and $19$; and etc.






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      It is true, but I doubt there's any significance to it. The number $p# - 1$ is clearly not divisible by $641$ if $pgeq 641$, and it turns out that $233# equiv 1pmod641$. Similarly, $3#1 - 1 = 5$ is divisible by $5$; and $7#-1 = 209$ is divisible by $11$ and $19$; and etc.






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        It is true, but I doubt there's any significance to it. The number $p# - 1$ is clearly not divisible by $641$ if $pgeq 641$, and it turns out that $233# equiv 1pmod641$. Similarly, $3#1 - 1 = 5$ is divisible by $5$; and $7#-1 = 209$ is divisible by $11$ and $19$; and etc.






        share|cite|improve this answer









        $endgroup$



        It is true, but I doubt there's any significance to it. The number $p# - 1$ is clearly not divisible by $641$ if $pgeq 641$, and it turns out that $233# equiv 1pmod641$. Similarly, $3#1 - 1 = 5$ is divisible by $5$; and $7#-1 = 209$ is divisible by $11$ and $19$; and etc.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Mar 30 at 12:28









        anomalyanomaly

        17.8k42666




        17.8k42666



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168204%2fa-conjecture-about-number-641%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Triangular numbers and gcdProving sum of a set is $0 pmod n$ if $n$ is odd, or $fracn2 pmod n$ if $n$ is even?Is greatest common divisor of two numbers really their smallest linear combination?GCD, LCM RelationshipProve a set of nonnegative integers with greatest common divisor 1 and closed under addition has all but finite many nonnegative integers.all pairs of a and b in an equation containing gcdTriangular Numbers Modulo $k$ - Hit All Values?Understanding the Existence and Uniqueness of the GCDGCD and LCM with logical symbolsThe greatest common divisor of two positive integers less than 100 is equal to 3. Their least common multiple is twelve times one of the integers.Suppose that for all integers $x$, $x|a$ and $x|b$ if and only if $x|c$. Then $c = gcd(a,b)$Which is the gcd of 2 numbers which are multiplied and the result is 600000?

            Србија Садржај Етимологија Географија Историја Политички систем и уставно-правно уређење Становништво Привреда Образовање Култура Спорт Државни празници Галерија Напомене Референце Литература Спољашње везе Мени за навигацију44°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.46744°48′N 20°28′E / 44.800° СГШ; 20.467° ИГД / 44.800; 20.467ууРезултати пописа 2011. према старости и полуу„Положај, рељеф и клима”„Europe: Serbia”„Основни подаци”„Gross domestic product based on purchasing-power-parity (PPP) valuation of country GDP”„Human Development Report 2018 – "Human Development Indices and Indicators 6”„Устав Републике Србије”Правопис српскога језикаGoogle DriveComparative Hungarian Cultural StudiesCalcium and Magnesium in Groundwater: Occurrence and Significance for Human Health„UNSD — Methodology”„Процене становништва | Републички завод за статистику Србије”The Age of Nepotism: Travel Journals and Observations from the Balkans During the Depression„The Serbian Revolution and the Serbian State”„Устав Србије”„Serbia a few steps away from concluding WTO accession negotiations”„A credible enlargement perspective for and enhanced EU engagement with the Western Balkans”„Freedom in the World 2017”„Serbia: On the Way to EU Accession”„Human Development Indices and Indicators: 2018 Statistical Update”„2018 Social Progress Index”„Global Peace Index”Sabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and Foes„Пројекат Растко—Лузица”„Serbia: Introduction”„Serbia”оригинала„The World Factbook: Serbia”„The World Factbook: Kosovo”„Border Police Department”„Uredba o kontroli prelaska administrativne linije prema Autonomnoj pokrajini Kosovo i Metohija”оригиналаIvana Carevic, Velimir Jovanovic, STRATIGRAPHIC-STRUCTURAL CHARACTERISTICS OF MAČVA BASIN, UDC 911.2:551.7(497.11), pp. 1Archived„About the Carpathians – Carpathian Heritage Society”оригинала„O Srbiji”оригинала„Статистички годишњак Србије, 2009: Географски прегледГеографија за осми разред основне школе„Отворена, електронска база едукационих радова”„Влада Републике Србије: Положај, рељеф и клима”„Копрен (Стара планина)”„Туристичка дестинација-Србија”„Висина водопада”„РХМЗ — Републички Хидрометеоролошки завод Србије Кнеза Вишеслава 66 Београд”„Фауна Србије”„Српске шуме на издисају”„Lepih šest odsto Srbije”„Илустрована историја Срба — Увод”„Винчанска култура - Градска општина Гроцка”„''„Винча — Праисторијска метропола”''”оригиналаЈужни Словени под византијском влашћу (600—1025)Држава маћедонских Словена„Карађорђе истина и мит, Проф. др Радош Љушић, Вечерње новости, фељтон, 18 наставака, 24. август - 10. септембар 2003.”„Политика: Како је утврђена војна неутралност, 13. јануар. 2010, приступљено децембра 2012.”„Србија и РС оживеле Дејтонски споразум”„Са српским пасошем у 104 земље”Војска Србије | О Војсци | Војска Србије — Улога, намена и задациАрхивираноВојска Србије | ОрганизацијаАрхивираноОдлука о изради Стратегије просторног развоја Републике Србије до 2020. годинеЗакон о територијалној организацији Републике СрбијеЗакон о државној управиНајчешће постављана питања.„Смањење броја статистичких региона кроз измене Закона о регионалном развоју”„2011 Human development Report”„Službena upotreba jezika i pisama”„Попис становништва, домаћинстава и станова 2011. године у Републици Србији. Књига 4: Вероисповест, матерњи језик и национална припадност”„Вероисповест, матерњи језик и национална”„Специјална известитељка УН за слободу религије и вероисповести Асма Јахангир, код Заштитника грађана Саше Јанковића”„Закон о државним и другим празницима у Републици Србији”„Веронаука у српским школама”„Serbia – Ancestral Genography Atlas”Бела књига Милошевићеве владавинеоригиналаGross domestic product based on purchasing-power-parity (PPP) per capita GDP БДП 2007—2013Актуелни показатељи — Република Србија„Попис становништва, домаћинстава и станова 2011. године у Републици Србији Књига 7: Економска активност”Zemlje kandidati za članstvo u EU„Putin drops South Stream gas pipeline to EU, courts Turkey”„„Соко — историјат””оригинала„„Рембас — историјат””оригинала„„Лубница — историјат””оригинала„„Штаваљ — Историјат””оригинала„„Боговина — историјат””оригинала„„Јасеновац — историјат””оригинала„„Вршка чука — историјат””оригинала„„Ибарски рудници — историјат””оригинала„Закон о просторном плану Републике Србије од 2010 до 2020”„Кривични законик — Недозвољена изградња нуклеарних постројења, члан 267”„Б92: Srbija uklonila obogaćeni uranijum, 25. октобар 2011”„Коришћење енергије ветра у Србији — природни услови и практична примена”„Енергија ветра”„Србија може да прави струју од сунца, биомасе, воде и ветра”„Моја електрана и друге ветрењаче”„Биомаса, струја без инвестиција”„Auto-karte Srbije”„www.srbija.gov.rs Статистике о Србији”оригинала„Статистика зе месец децембар и 2016. годину”„Turizam u Srbiji”„Univerzitet u Beogradu: Vek i po akademskog znanja”„Vojnomedicinska akademija: 165 godina tradicije i napretka”Никола Гиљен, Соња Јовићевић Јов и Јелена Мандић: Мирослављево јеванђеље; Текст је публикован у ревији „Историја” и настао је као део научно-истраживачког рада Фонда „Принцеза Оливера”„World music асоцијација Србије”оригинала„World music у Србији”оригинала„Pogledajte: Boban Marković svira u redakciji „Blica”!”„Eurovision Song Contest 2007 Final”„Projekat Rastko, Alojz Ujes: Joakim Vujic”„Унеско”„Списак локалитета Светске баштине”„Guča i Egzit zaludeli svet”оригинала„Sabor trubača GUČA”„Interesting facts about Exit”оригинала„FIFA Association Information”„Serbia women win EuroBasket title, gain first Olympics berth”„Odbojkašice ispisale istoriju – Srbija je svetski prvak!”„Сајт Ватерполо савеза Србије, Освојене медаље”„Сајт ФК Црвена звезда, Бари”„Сајт ФК Црвена звезда, Токио”„Blic:Zlatna Milica! Mandićeva donela Srbiji najsjajnije odličje u Londonu!”„Милица Мандић освојила златну медаљу („Политика”, 12. август 2012)”„Златни Давор Штефанек”„DŽUDO ŠAMPIONAT Majdov osvojio svetsko zlato”„Španovićeva trećim skokom svih vremena do zlata!”„Чудо Иване Шпановић — 7,24 м („Политика”, 5. март 2017)”The Age of Nepotism: Travel Journals and Observations from the Balkans During the DepressionCalcium and Magnesium in Groundwater: Occurrence and Significance for Human HealthComparative Hungarian Cultural StudiesБела књига Милошевићеве владавинеоригиналаComparative Hungarian Cultural StudiesSabres of Two Easts: An Untold History of Muslims in Eastern Europe, Their Friends and FoesГеографија за осми разред основне школеSerbia: the country, people, life, customsМедијиВодичПодациВлада Републике СрбијеНародна скупштина Републике СрбијеНародна канцеларија председника Републике СрбијеНародна банка СрбијеТуристичка организација СрбијеПортал еУправе Републике СрбијеРепубличко јавно правобранилаштвоууууууWorldCat151202876n851959190000 0000 9526 67094054598-24101000570825ge130919

            Barbados Ynhâld Skiednis | Geografy | Demografy | Navigaasjemenu